Metamath Proof Explorer


Theorem thlval

Description: Value of the Hilbert lattice. (Contributed by Mario Carneiro, 25-Oct-2015)

Ref Expression
Hypotheses thlval.k 𝐾 = ( toHL ‘ 𝑊 )
thlval.c 𝐶 = ( ClSubSp ‘ 𝑊 )
thlval.i 𝐼 = ( toInc ‘ 𝐶 )
thlval.o = ( ocv ‘ 𝑊 )
Assertion thlval ( 𝑊𝑉𝐾 = ( 𝐼 sSet ⟨ ( oc ‘ ndx ) , ⟩ ) )

Proof

Step Hyp Ref Expression
1 thlval.k 𝐾 = ( toHL ‘ 𝑊 )
2 thlval.c 𝐶 = ( ClSubSp ‘ 𝑊 )
3 thlval.i 𝐼 = ( toInc ‘ 𝐶 )
4 thlval.o = ( ocv ‘ 𝑊 )
5 elex ( 𝑊𝑉𝑊 ∈ V )
6 fveq2 ( = 𝑊 → ( ClSubSp ‘ ) = ( ClSubSp ‘ 𝑊 ) )
7 6 2 eqtr4di ( = 𝑊 → ( ClSubSp ‘ ) = 𝐶 )
8 7 fveq2d ( = 𝑊 → ( toInc ‘ ( ClSubSp ‘ ) ) = ( toInc ‘ 𝐶 ) )
9 8 3 eqtr4di ( = 𝑊 → ( toInc ‘ ( ClSubSp ‘ ) ) = 𝐼 )
10 fveq2 ( = 𝑊 → ( ocv ‘ ) = ( ocv ‘ 𝑊 ) )
11 10 4 eqtr4di ( = 𝑊 → ( ocv ‘ ) = )
12 11 opeq2d ( = 𝑊 → ⟨ ( oc ‘ ndx ) , ( ocv ‘ ) ⟩ = ⟨ ( oc ‘ ndx ) , ⟩ )
13 9 12 oveq12d ( = 𝑊 → ( ( toInc ‘ ( ClSubSp ‘ ) ) sSet ⟨ ( oc ‘ ndx ) , ( ocv ‘ ) ⟩ ) = ( 𝐼 sSet ⟨ ( oc ‘ ndx ) , ⟩ ) )
14 df-thl toHL = ( ∈ V ↦ ( ( toInc ‘ ( ClSubSp ‘ ) ) sSet ⟨ ( oc ‘ ndx ) , ( ocv ‘ ) ⟩ ) )
15 ovex ( 𝐼 sSet ⟨ ( oc ‘ ndx ) , ⟩ ) ∈ V
16 13 14 15 fvmpt ( 𝑊 ∈ V → ( toHL ‘ 𝑊 ) = ( 𝐼 sSet ⟨ ( oc ‘ ndx ) , ⟩ ) )
17 1 16 syl5eq ( 𝑊 ∈ V → 𝐾 = ( 𝐼 sSet ⟨ ( oc ‘ ndx ) , ⟩ ) )
18 5 17 syl ( 𝑊𝑉𝐾 = ( 𝐼 sSet ⟨ ( oc ‘ ndx ) , ⟩ ) )