Metamath Proof Explorer


Theorem thlval

Description: Value of the Hilbert lattice. (Contributed by Mario Carneiro, 25-Oct-2015)

Ref Expression
Hypotheses thlval.k
|- K = ( toHL ` W )
thlval.c
|- C = ( ClSubSp ` W )
thlval.i
|- I = ( toInc ` C )
thlval.o
|- ._|_ = ( ocv ` W )
Assertion thlval
|- ( W e. V -> K = ( I sSet <. ( oc ` ndx ) , ._|_ >. ) )

Proof

Step Hyp Ref Expression
1 thlval.k
 |-  K = ( toHL ` W )
2 thlval.c
 |-  C = ( ClSubSp ` W )
3 thlval.i
 |-  I = ( toInc ` C )
4 thlval.o
 |-  ._|_ = ( ocv ` W )
5 elex
 |-  ( W e. V -> W e. _V )
6 fveq2
 |-  ( h = W -> ( ClSubSp ` h ) = ( ClSubSp ` W ) )
7 6 2 eqtr4di
 |-  ( h = W -> ( ClSubSp ` h ) = C )
8 7 fveq2d
 |-  ( h = W -> ( toInc ` ( ClSubSp ` h ) ) = ( toInc ` C ) )
9 8 3 eqtr4di
 |-  ( h = W -> ( toInc ` ( ClSubSp ` h ) ) = I )
10 fveq2
 |-  ( h = W -> ( ocv ` h ) = ( ocv ` W ) )
11 10 4 eqtr4di
 |-  ( h = W -> ( ocv ` h ) = ._|_ )
12 11 opeq2d
 |-  ( h = W -> <. ( oc ` ndx ) , ( ocv ` h ) >. = <. ( oc ` ndx ) , ._|_ >. )
13 9 12 oveq12d
 |-  ( h = W -> ( ( toInc ` ( ClSubSp ` h ) ) sSet <. ( oc ` ndx ) , ( ocv ` h ) >. ) = ( I sSet <. ( oc ` ndx ) , ._|_ >. ) )
14 df-thl
 |-  toHL = ( h e. _V |-> ( ( toInc ` ( ClSubSp ` h ) ) sSet <. ( oc ` ndx ) , ( ocv ` h ) >. ) )
15 ovex
 |-  ( I sSet <. ( oc ` ndx ) , ._|_ >. ) e. _V
16 13 14 15 fvmpt
 |-  ( W e. _V -> ( toHL ` W ) = ( I sSet <. ( oc ` ndx ) , ._|_ >. ) )
17 1 16 syl5eq
 |-  ( W e. _V -> K = ( I sSet <. ( oc ` ndx ) , ._|_ >. ) )
18 5 17 syl
 |-  ( W e. V -> K = ( I sSet <. ( oc ` ndx ) , ._|_ >. ) )