Step |
Hyp |
Ref |
Expression |
1 |
|
thlval.k |
⊢ 𝐾 = ( toHL ‘ 𝑊 ) |
2 |
|
thlbas.c |
⊢ 𝐶 = ( ClSubSp ‘ 𝑊 ) |
3 |
2
|
fvexi |
⊢ 𝐶 ∈ V |
4 |
|
eqid |
⊢ ( toInc ‘ 𝐶 ) = ( toInc ‘ 𝐶 ) |
5 |
4
|
ipobas |
⊢ ( 𝐶 ∈ V → 𝐶 = ( Base ‘ ( toInc ‘ 𝐶 ) ) ) |
6 |
3 5
|
ax-mp |
⊢ 𝐶 = ( Base ‘ ( toInc ‘ 𝐶 ) ) |
7 |
|
baseid |
⊢ Base = Slot ( Base ‘ ndx ) |
8 |
|
basendxnocndx |
⊢ ( Base ‘ ndx ) ≠ ( oc ‘ ndx ) |
9 |
7 8
|
setsnid |
⊢ ( Base ‘ ( toInc ‘ 𝐶 ) ) = ( Base ‘ ( ( toInc ‘ 𝐶 ) sSet 〈 ( oc ‘ ndx ) , ( ocv ‘ 𝑊 ) 〉 ) ) |
10 |
6 9
|
eqtri |
⊢ 𝐶 = ( Base ‘ ( ( toInc ‘ 𝐶 ) sSet 〈 ( oc ‘ ndx ) , ( ocv ‘ 𝑊 ) 〉 ) ) |
11 |
|
eqid |
⊢ ( ocv ‘ 𝑊 ) = ( ocv ‘ 𝑊 ) |
12 |
1 2 4 11
|
thlval |
⊢ ( 𝑊 ∈ V → 𝐾 = ( ( toInc ‘ 𝐶 ) sSet 〈 ( oc ‘ ndx ) , ( ocv ‘ 𝑊 ) 〉 ) ) |
13 |
12
|
fveq2d |
⊢ ( 𝑊 ∈ V → ( Base ‘ 𝐾 ) = ( Base ‘ ( ( toInc ‘ 𝐶 ) sSet 〈 ( oc ‘ ndx ) , ( ocv ‘ 𝑊 ) 〉 ) ) ) |
14 |
10 13
|
eqtr4id |
⊢ ( 𝑊 ∈ V → 𝐶 = ( Base ‘ 𝐾 ) ) |
15 |
|
base0 |
⊢ ∅ = ( Base ‘ ∅ ) |
16 |
|
fvprc |
⊢ ( ¬ 𝑊 ∈ V → ( ClSubSp ‘ 𝑊 ) = ∅ ) |
17 |
2 16
|
eqtrid |
⊢ ( ¬ 𝑊 ∈ V → 𝐶 = ∅ ) |
18 |
|
fvprc |
⊢ ( ¬ 𝑊 ∈ V → ( toHL ‘ 𝑊 ) = ∅ ) |
19 |
1 18
|
eqtrid |
⊢ ( ¬ 𝑊 ∈ V → 𝐾 = ∅ ) |
20 |
19
|
fveq2d |
⊢ ( ¬ 𝑊 ∈ V → ( Base ‘ 𝐾 ) = ( Base ‘ ∅ ) ) |
21 |
15 17 20
|
3eqtr4a |
⊢ ( ¬ 𝑊 ∈ V → 𝐶 = ( Base ‘ 𝐾 ) ) |
22 |
14 21
|
pm2.61i |
⊢ 𝐶 = ( Base ‘ 𝐾 ) |