Metamath Proof Explorer


Theorem thlleOLD

Description: Obsolete proof of thlle as of 11-Nov-2024. Ordering on the Hilbert lattice of closed subspaces. (Contributed by Mario Carneiro, 25-Oct-2015) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses thlval.k K=toHLW
thlbas.c C=ClSubSpW
thlle.i I=toIncC
thlle.l ˙=I
Assertion thlleOLD ˙=K

Proof

Step Hyp Ref Expression
1 thlval.k K=toHLW
2 thlbas.c C=ClSubSpW
3 thlle.i I=toIncC
4 thlle.l ˙=I
5 pleid le=Slotndx
6 10re 10
7 1nn0 10
8 0nn0 00
9 1nn 1
10 0lt1 0<1
11 7 8 9 10 declt 10<11
12 6 11 ltneii 1011
13 plendx ndx=10
14 ocndx ocndx=11
15 13 14 neeq12i ndxocndx1011
16 12 15 mpbir ndxocndx
17 5 16 setsnid I=IsSetocndxocvW
18 4 17 eqtri ˙=IsSetocndxocvW
19 eqid ocvW=ocvW
20 1 2 3 19 thlval WVK=IsSetocndxocvW
21 20 fveq2d WVK=IsSetocndxocvW
22 18 21 eqtr4id WV˙=K
23 5 str0 =
24 2 fvexi CV
25 3 ipolerval CVxy|xyCxy=I
26 24 25 ax-mp xy|xyCxy=I
27 4 26 eqtr4i ˙=xy|xyCxy
28 opabn0 xy|xyCxyxyxyCxy
29 vex xV
30 vex yV
31 29 30 prss xCyCxyC
32 elfvex xClSubSpWWV
33 32 2 eleq2s xCWV
34 33 ad2antrr xCyCxyWV
35 31 34 sylanbr xyCxyWV
36 35 exlimivv xyxyCxyWV
37 28 36 sylbi xy|xyCxyWV
38 37 necon1bi ¬WVxy|xyCxy=
39 27 38 eqtrid ¬WV˙=
40 fvprc ¬WVtoHLW=
41 1 40 eqtrid ¬WVK=
42 41 fveq2d ¬WVK=
43 23 39 42 3eqtr4a ¬WV˙=K
44 22 43 pm2.61i ˙=K