| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ply1val.1 |
|- P = ( Poly1 ` R ) |
| 2 |
|
ply1lss.2 |
|- S = ( PwSer1 ` R ) |
| 3 |
|
ply1lss.u |
|- U = ( Base ` P ) |
| 4 |
|
eqid |
|- ( 1o mPoly R ) = ( 1o mPoly R ) |
| 5 |
|
eqid |
|- ( 1o mPwSer R ) = ( 1o mPwSer R ) |
| 6 |
|
eqid |
|- ( Base ` ( 1o mPoly R ) ) = ( Base ` ( 1o mPoly R ) ) |
| 7 |
|
eqid |
|- ( Base ` S ) = ( Base ` S ) |
| 8 |
2 7 5
|
psr1bas2 |
|- ( Base ` S ) = ( Base ` ( 1o mPwSer R ) ) |
| 9 |
4 5 6 8
|
mplbasss |
|- ( Base ` ( 1o mPoly R ) ) C_ ( Base ` S ) |
| 10 |
1 2
|
ply1val |
|- P = ( S |`s ( Base ` ( 1o mPoly R ) ) ) |
| 11 |
10 7
|
ressbas2 |
|- ( ( Base ` ( 1o mPoly R ) ) C_ ( Base ` S ) -> ( Base ` ( 1o mPoly R ) ) = ( Base ` P ) ) |
| 12 |
9 11
|
ax-mp |
|- ( Base ` ( 1o mPoly R ) ) = ( Base ` P ) |
| 13 |
3 12
|
eqtr4i |
|- U = ( Base ` ( 1o mPoly R ) ) |