| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fvi |
|- ( R e. _V -> ( _I ` R ) = R ) |
| 2 |
1
|
eqcomd |
|- ( R e. _V -> R = ( _I ` R ) ) |
| 3 |
2
|
fveq2d |
|- ( R e. _V -> ( Poly1 ` R ) = ( Poly1 ` ( _I ` R ) ) ) |
| 4 |
3
|
fveq2d |
|- ( R e. _V -> ( Base ` ( Poly1 ` R ) ) = ( Base ` ( Poly1 ` ( _I ` R ) ) ) ) |
| 5 |
|
base0 |
|- (/) = ( Base ` (/) ) |
| 6 |
|
00ply1bas |
|- (/) = ( Base ` ( Poly1 ` (/) ) ) |
| 7 |
5 6
|
eqtr3i |
|- ( Base ` (/) ) = ( Base ` ( Poly1 ` (/) ) ) |
| 8 |
|
fvprc |
|- ( -. R e. _V -> ( Poly1 ` R ) = (/) ) |
| 9 |
8
|
fveq2d |
|- ( -. R e. _V -> ( Base ` ( Poly1 ` R ) ) = ( Base ` (/) ) ) |
| 10 |
|
fvprc |
|- ( -. R e. _V -> ( _I ` R ) = (/) ) |
| 11 |
10
|
fveq2d |
|- ( -. R e. _V -> ( Poly1 ` ( _I ` R ) ) = ( Poly1 ` (/) ) ) |
| 12 |
11
|
fveq2d |
|- ( -. R e. _V -> ( Base ` ( Poly1 ` ( _I ` R ) ) ) = ( Base ` ( Poly1 ` (/) ) ) ) |
| 13 |
7 9 12
|
3eqtr4a |
|- ( -. R e. _V -> ( Base ` ( Poly1 ` R ) ) = ( Base ` ( Poly1 ` ( _I ` R ) ) ) ) |
| 14 |
4 13
|
pm2.61i |
|- ( Base ` ( Poly1 ` R ) ) = ( Base ` ( Poly1 ` ( _I ` R ) ) ) |