Metamath Proof Explorer


Theorem ply1basfvi

Description: Protection compatibility of the univariate polynomial base set. (Contributed by Stefan O'Rear, 27-Mar-2015)

Ref Expression
Assertion ply1basfvi BasePoly1R=BasePoly1IR

Proof

Step Hyp Ref Expression
1 fvi RVIR=R
2 1 eqcomd RVR=IR
3 2 fveq2d RVPoly1R=Poly1IR
4 3 fveq2d RVBasePoly1R=BasePoly1IR
5 base0 =Base
6 00ply1bas =BasePoly1
7 5 6 eqtr3i Base=BasePoly1
8 fvprc ¬RVPoly1R=
9 8 fveq2d ¬RVBasePoly1R=Base
10 fvprc ¬RVIR=
11 10 fveq2d ¬RVPoly1IR=Poly1
12 11 fveq2d ¬RVBasePoly1IR=BasePoly1
13 7 9 12 3eqtr4a ¬RVBasePoly1R=BasePoly1IR
14 4 13 pm2.61i BasePoly1R=BasePoly1IR