| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ply1baspropd.b1 |
|- ( ph -> B = ( Base ` R ) ) |
| 2 |
|
ply1baspropd.b2 |
|- ( ph -> B = ( Base ` S ) ) |
| 3 |
|
ply1baspropd.p |
|- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( x ( +g ` R ) y ) = ( x ( +g ` S ) y ) ) |
| 4 |
1 2 3
|
mplbaspropd |
|- ( ph -> ( Base ` ( 1o mPoly R ) ) = ( Base ` ( 1o mPoly S ) ) ) |
| 5 |
|
eqid |
|- ( Poly1 ` R ) = ( Poly1 ` R ) |
| 6 |
|
eqid |
|- ( Base ` ( Poly1 ` R ) ) = ( Base ` ( Poly1 ` R ) ) |
| 7 |
5 6
|
ply1bas |
|- ( Base ` ( Poly1 ` R ) ) = ( Base ` ( 1o mPoly R ) ) |
| 8 |
|
eqid |
|- ( Poly1 ` S ) = ( Poly1 ` S ) |
| 9 |
|
eqid |
|- ( Base ` ( Poly1 ` S ) ) = ( Base ` ( Poly1 ` S ) ) |
| 10 |
8 9
|
ply1bas |
|- ( Base ` ( Poly1 ` S ) ) = ( Base ` ( 1o mPoly S ) ) |
| 11 |
4 7 10
|
3eqtr4g |
|- ( ph -> ( Base ` ( Poly1 ` R ) ) = ( Base ` ( Poly1 ` S ) ) ) |