Metamath Proof Explorer


Theorem ply1plusgpropd

Description: Property deduction for univariate polynomial addition. (Contributed by Stefan O'Rear, 27-Mar-2015)

Ref Expression
Hypotheses ply1baspropd.b1
|- ( ph -> B = ( Base ` R ) )
ply1baspropd.b2
|- ( ph -> B = ( Base ` S ) )
ply1baspropd.p
|- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( x ( +g ` R ) y ) = ( x ( +g ` S ) y ) )
Assertion ply1plusgpropd
|- ( ph -> ( +g ` ( Poly1 ` R ) ) = ( +g ` ( Poly1 ` S ) ) )

Proof

Step Hyp Ref Expression
1 ply1baspropd.b1
 |-  ( ph -> B = ( Base ` R ) )
2 ply1baspropd.b2
 |-  ( ph -> B = ( Base ` S ) )
3 ply1baspropd.p
 |-  ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( x ( +g ` R ) y ) = ( x ( +g ` S ) y ) )
4 1 2 3 psrplusgpropd
 |-  ( ph -> ( +g ` ( 1o mPwSer R ) ) = ( +g ` ( 1o mPwSer S ) ) )
5 eqid
 |-  ( 1o mPoly R ) = ( 1o mPoly R )
6 eqid
 |-  ( 1o mPwSer R ) = ( 1o mPwSer R )
7 eqid
 |-  ( +g ` ( 1o mPoly R ) ) = ( +g ` ( 1o mPoly R ) )
8 5 6 7 mplplusg
 |-  ( +g ` ( 1o mPoly R ) ) = ( +g ` ( 1o mPwSer R ) )
9 eqid
 |-  ( 1o mPoly S ) = ( 1o mPoly S )
10 eqid
 |-  ( 1o mPwSer S ) = ( 1o mPwSer S )
11 eqid
 |-  ( +g ` ( 1o mPoly S ) ) = ( +g ` ( 1o mPoly S ) )
12 9 10 11 mplplusg
 |-  ( +g ` ( 1o mPoly S ) ) = ( +g ` ( 1o mPwSer S ) )
13 4 8 12 3eqtr4g
 |-  ( ph -> ( +g ` ( 1o mPoly R ) ) = ( +g ` ( 1o mPoly S ) ) )
14 eqid
 |-  ( Poly1 ` R ) = ( Poly1 ` R )
15 eqid
 |-  ( +g ` ( Poly1 ` R ) ) = ( +g ` ( Poly1 ` R ) )
16 14 5 15 ply1plusg
 |-  ( +g ` ( Poly1 ` R ) ) = ( +g ` ( 1o mPoly R ) )
17 eqid
 |-  ( Poly1 ` S ) = ( Poly1 ` S )
18 eqid
 |-  ( +g ` ( Poly1 ` S ) ) = ( +g ` ( Poly1 ` S ) )
19 17 9 18 ply1plusg
 |-  ( +g ` ( Poly1 ` S ) ) = ( +g ` ( 1o mPoly S ) )
20 13 16 19 3eqtr4g
 |-  ( ph -> ( +g ` ( Poly1 ` R ) ) = ( +g ` ( Poly1 ` S ) ) )