| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ply1baspropd.b1 |
|- ( ph -> B = ( Base ` R ) ) |
| 2 |
|
ply1baspropd.b2 |
|- ( ph -> B = ( Base ` S ) ) |
| 3 |
|
ply1baspropd.p |
|- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( x ( +g ` R ) y ) = ( x ( +g ` S ) y ) ) |
| 4 |
1 2 3
|
psrplusgpropd |
|- ( ph -> ( +g ` ( 1o mPwSer R ) ) = ( +g ` ( 1o mPwSer S ) ) ) |
| 5 |
|
eqid |
|- ( 1o mPoly R ) = ( 1o mPoly R ) |
| 6 |
|
eqid |
|- ( 1o mPwSer R ) = ( 1o mPwSer R ) |
| 7 |
|
eqid |
|- ( +g ` ( 1o mPoly R ) ) = ( +g ` ( 1o mPoly R ) ) |
| 8 |
5 6 7
|
mplplusg |
|- ( +g ` ( 1o mPoly R ) ) = ( +g ` ( 1o mPwSer R ) ) |
| 9 |
|
eqid |
|- ( 1o mPoly S ) = ( 1o mPoly S ) |
| 10 |
|
eqid |
|- ( 1o mPwSer S ) = ( 1o mPwSer S ) |
| 11 |
|
eqid |
|- ( +g ` ( 1o mPoly S ) ) = ( +g ` ( 1o mPoly S ) ) |
| 12 |
9 10 11
|
mplplusg |
|- ( +g ` ( 1o mPoly S ) ) = ( +g ` ( 1o mPwSer S ) ) |
| 13 |
4 8 12
|
3eqtr4g |
|- ( ph -> ( +g ` ( 1o mPoly R ) ) = ( +g ` ( 1o mPoly S ) ) ) |
| 14 |
|
eqid |
|- ( Poly1 ` R ) = ( Poly1 ` R ) |
| 15 |
|
eqid |
|- ( +g ` ( Poly1 ` R ) ) = ( +g ` ( Poly1 ` R ) ) |
| 16 |
14 5 15
|
ply1plusg |
|- ( +g ` ( Poly1 ` R ) ) = ( +g ` ( 1o mPoly R ) ) |
| 17 |
|
eqid |
|- ( Poly1 ` S ) = ( Poly1 ` S ) |
| 18 |
|
eqid |
|- ( +g ` ( Poly1 ` S ) ) = ( +g ` ( Poly1 ` S ) ) |
| 19 |
17 9 18
|
ply1plusg |
|- ( +g ` ( Poly1 ` S ) ) = ( +g ` ( 1o mPoly S ) ) |
| 20 |
13 16 19
|
3eqtr4g |
|- ( ph -> ( +g ` ( Poly1 ` R ) ) = ( +g ` ( Poly1 ` S ) ) ) |