Metamath Proof Explorer


Theorem ply1plusgpropd

Description: Property deduction for univariate polynomial addition. (Contributed by Stefan O'Rear, 27-Mar-2015)

Ref Expression
Hypotheses ply1baspropd.b1 φB=BaseR
ply1baspropd.b2 φB=BaseS
ply1baspropd.p φxByBx+Ry=x+Sy
Assertion ply1plusgpropd φ+Poly1R=+Poly1S

Proof

Step Hyp Ref Expression
1 ply1baspropd.b1 φB=BaseR
2 ply1baspropd.b2 φB=BaseS
3 ply1baspropd.p φxByBx+Ry=x+Sy
4 1 2 3 psrplusgpropd φ+1𝑜mPwSerR=+1𝑜mPwSerS
5 eqid 1𝑜mPolyR=1𝑜mPolyR
6 eqid 1𝑜mPwSerR=1𝑜mPwSerR
7 eqid +1𝑜mPolyR=+1𝑜mPolyR
8 5 6 7 mplplusg +1𝑜mPolyR=+1𝑜mPwSerR
9 eqid 1𝑜mPolyS=1𝑜mPolyS
10 eqid 1𝑜mPwSerS=1𝑜mPwSerS
11 eqid +1𝑜mPolyS=+1𝑜mPolyS
12 9 10 11 mplplusg +1𝑜mPolyS=+1𝑜mPwSerS
13 4 8 12 3eqtr4g φ+1𝑜mPolyR=+1𝑜mPolyS
14 eqid Poly1R=Poly1R
15 eqid +Poly1R=+Poly1R
16 14 5 15 ply1plusg +Poly1R=+1𝑜mPolyR
17 eqid Poly1S=Poly1S
18 eqid +Poly1S=+Poly1S
19 17 9 18 ply1plusg +Poly1S=+1𝑜mPolyS
20 13 16 19 3eqtr4g φ+Poly1R=+Poly1S