| Step |
Hyp |
Ref |
Expression |
| 1 |
|
psrplusgpropd.b1 |
|
| 2 |
|
psrplusgpropd.b2 |
|
| 3 |
|
psrplusgpropd.p |
|
| 4 |
|
simpl1 |
|
| 5 |
|
eqid |
|
| 6 |
|
eqid |
|
| 7 |
|
eqid |
|
| 8 |
|
eqid |
|
| 9 |
|
simp2 |
|
| 10 |
5 6 7 8 9
|
psrelbas |
|
| 11 |
10
|
ffvelcdmda |
|
| 12 |
4 1
|
syl |
|
| 13 |
11 12
|
eleqtrrd |
|
| 14 |
|
simp3 |
|
| 15 |
5 6 7 8 14
|
psrelbas |
|
| 16 |
15
|
ffvelcdmda |
|
| 17 |
16 12
|
eleqtrrd |
|
| 18 |
3
|
oveqrspc2v |
|
| 19 |
4 13 17 18
|
syl12anc |
|
| 20 |
19
|
mpteq2dva |
|
| 21 |
10
|
ffnd |
|
| 22 |
15
|
ffnd |
|
| 23 |
|
ovex |
|
| 24 |
23
|
rabex |
|
| 25 |
24
|
a1i |
|
| 26 |
|
inidm |
|
| 27 |
|
eqidd |
|
| 28 |
|
eqidd |
|
| 29 |
21 22 25 25 26 27 28
|
offval |
|
| 30 |
21 22 25 25 26 27 28
|
offval |
|
| 31 |
20 29 30
|
3eqtr4d |
|
| 32 |
31
|
mpoeq3dva |
|
| 33 |
1 2
|
eqtr3d |
|
| 34 |
33
|
psrbaspropd |
|
| 35 |
|
mpoeq12 |
|
| 36 |
34 34 35
|
syl2anc |
|
| 37 |
32 36
|
eqtrd |
|
| 38 |
|
ofmres |
|
| 39 |
|
ofmres |
|
| 40 |
37 38 39
|
3eqtr4g |
|
| 41 |
|
eqid |
|
| 42 |
|
eqid |
|
| 43 |
5 8 41 42
|
psrplusg |
|
| 44 |
|
eqid |
|
| 45 |
|
eqid |
|
| 46 |
|
eqid |
|
| 47 |
|
eqid |
|
| 48 |
44 45 46 47
|
psrplusg |
|
| 49 |
40 43 48
|
3eqtr4g |
|