| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ply1baspropd.b1 |
⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝑅 ) ) |
| 2 |
|
ply1baspropd.b2 |
⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝑆 ) ) |
| 3 |
|
ply1baspropd.p |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ) |
| 4 |
1 2 3
|
psrplusgpropd |
⊢ ( 𝜑 → ( +g ‘ ( 1o mPwSer 𝑅 ) ) = ( +g ‘ ( 1o mPwSer 𝑆 ) ) ) |
| 5 |
|
eqid |
⊢ ( 1o mPoly 𝑅 ) = ( 1o mPoly 𝑅 ) |
| 6 |
|
eqid |
⊢ ( 1o mPwSer 𝑅 ) = ( 1o mPwSer 𝑅 ) |
| 7 |
|
eqid |
⊢ ( +g ‘ ( 1o mPoly 𝑅 ) ) = ( +g ‘ ( 1o mPoly 𝑅 ) ) |
| 8 |
5 6 7
|
mplplusg |
⊢ ( +g ‘ ( 1o mPoly 𝑅 ) ) = ( +g ‘ ( 1o mPwSer 𝑅 ) ) |
| 9 |
|
eqid |
⊢ ( 1o mPoly 𝑆 ) = ( 1o mPoly 𝑆 ) |
| 10 |
|
eqid |
⊢ ( 1o mPwSer 𝑆 ) = ( 1o mPwSer 𝑆 ) |
| 11 |
|
eqid |
⊢ ( +g ‘ ( 1o mPoly 𝑆 ) ) = ( +g ‘ ( 1o mPoly 𝑆 ) ) |
| 12 |
9 10 11
|
mplplusg |
⊢ ( +g ‘ ( 1o mPoly 𝑆 ) ) = ( +g ‘ ( 1o mPwSer 𝑆 ) ) |
| 13 |
4 8 12
|
3eqtr4g |
⊢ ( 𝜑 → ( +g ‘ ( 1o mPoly 𝑅 ) ) = ( +g ‘ ( 1o mPoly 𝑆 ) ) ) |
| 14 |
|
eqid |
⊢ ( Poly1 ‘ 𝑅 ) = ( Poly1 ‘ 𝑅 ) |
| 15 |
|
eqid |
⊢ ( +g ‘ ( Poly1 ‘ 𝑅 ) ) = ( +g ‘ ( Poly1 ‘ 𝑅 ) ) |
| 16 |
14 5 15
|
ply1plusg |
⊢ ( +g ‘ ( Poly1 ‘ 𝑅 ) ) = ( +g ‘ ( 1o mPoly 𝑅 ) ) |
| 17 |
|
eqid |
⊢ ( Poly1 ‘ 𝑆 ) = ( Poly1 ‘ 𝑆 ) |
| 18 |
|
eqid |
⊢ ( +g ‘ ( Poly1 ‘ 𝑆 ) ) = ( +g ‘ ( Poly1 ‘ 𝑆 ) ) |
| 19 |
17 9 18
|
ply1plusg |
⊢ ( +g ‘ ( Poly1 ‘ 𝑆 ) ) = ( +g ‘ ( 1o mPoly 𝑆 ) ) |
| 20 |
13 16 19
|
3eqtr4g |
⊢ ( 𝜑 → ( +g ‘ ( Poly1 ‘ 𝑅 ) ) = ( +g ‘ ( Poly1 ‘ 𝑆 ) ) ) |