Description: Theorem *13.193 in WhiteheadRussell p. 179. (Contributed by Andrew Salmon, 3-Jun-2011)
Ref | Expression | ||
---|---|---|---|
Assertion | pm13.193 | |- ( ( ph /\ x = y ) <-> ( [ y / x ] ph /\ x = y ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbequ12 | |- ( x = y -> ( ph <-> [ y / x ] ph ) ) |
|
2 | 1 | pm5.32ri | |- ( ( ph /\ x = y ) <-> ( [ y / x ] ph /\ x = y ) ) |