Description: Theorem *13.194 in WhiteheadRussell p. 179. (Contributed by Andrew Salmon, 3-Jun-2011)
Ref | Expression | ||
---|---|---|---|
Assertion | pm13.194 | |- ( ( ph /\ x = y ) <-> ( [ y / x ] ph /\ ph /\ x = y ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm13.13a | |- ( ( ph /\ x = y ) -> [. y / x ]. ph ) |
|
2 | sbsbc | |- ( [ y / x ] ph <-> [. y / x ]. ph ) |
|
3 | 1 2 | sylibr | |- ( ( ph /\ x = y ) -> [ y / x ] ph ) |
4 | simpl | |- ( ( ph /\ x = y ) -> ph ) |
|
5 | simpr | |- ( ( ph /\ x = y ) -> x = y ) |
|
6 | 3 4 5 | 3jca | |- ( ( ph /\ x = y ) -> ( [ y / x ] ph /\ ph /\ x = y ) ) |
7 | 3simpc | |- ( ( [ y / x ] ph /\ ph /\ x = y ) -> ( ph /\ x = y ) ) |
|
8 | 6 7 | impbii | |- ( ( ph /\ x = y ) <-> ( [ y / x ] ph /\ ph /\ x = y ) ) |