Metamath Proof Explorer


Theorem pm13.194

Description: Theorem *13.194 in WhiteheadRussell p. 179. (Contributed by Andrew Salmon, 3-Jun-2011)

Ref Expression
Assertion pm13.194
|- ( ( ph /\ x = y ) <-> ( [ y / x ] ph /\ ph /\ x = y ) )

Proof

Step Hyp Ref Expression
1 pm13.13a
 |-  ( ( ph /\ x = y ) -> [. y / x ]. ph )
2 sbsbc
 |-  ( [ y / x ] ph <-> [. y / x ]. ph )
3 1 2 sylibr
 |-  ( ( ph /\ x = y ) -> [ y / x ] ph )
4 simpl
 |-  ( ( ph /\ x = y ) -> ph )
5 simpr
 |-  ( ( ph /\ x = y ) -> x = y )
6 3 4 5 3jca
 |-  ( ( ph /\ x = y ) -> ( [ y / x ] ph /\ ph /\ x = y ) )
7 3simpc
 |-  ( ( [ y / x ] ph /\ ph /\ x = y ) -> ( ph /\ x = y ) )
8 6 7 impbii
 |-  ( ( ph /\ x = y ) <-> ( [ y / x ] ph /\ ph /\ x = y ) )