Metamath Proof Explorer


Theorem pm13.195

Description: Theorem *13.195 in WhiteheadRussell p. 179. This theorem is very similar to sbc5 . (Contributed by Andrew Salmon, 3-Jun-2011) (Revised by NM, 4-Jan-2017)

Ref Expression
Assertion pm13.195
|- ( E. y ( y = A /\ ph ) <-> [. A / y ]. ph )

Proof

Step Hyp Ref Expression
1 sbc5
 |-  ( [. A / y ]. ph <-> E. y ( y = A /\ ph ) )
2 1 bicomi
 |-  ( E. y ( y = A /\ ph ) <-> [. A / y ]. ph )