Metamath Proof Explorer


Theorem pm13.194

Description: Theorem *13.194 in WhiteheadRussell p. 179. (Contributed by Andrew Salmon, 3-Jun-2011)

Ref Expression
Assertion pm13.194 ( ( 𝜑𝑥 = 𝑦 ) ↔ ( [ 𝑦 / 𝑥 ] 𝜑𝜑𝑥 = 𝑦 ) )

Proof

Step Hyp Ref Expression
1 pm13.13a ( ( 𝜑𝑥 = 𝑦 ) → [ 𝑦 / 𝑥 ] 𝜑 )
2 sbsbc ( [ 𝑦 / 𝑥 ] 𝜑[ 𝑦 / 𝑥 ] 𝜑 )
3 1 2 sylibr ( ( 𝜑𝑥 = 𝑦 ) → [ 𝑦 / 𝑥 ] 𝜑 )
4 simpl ( ( 𝜑𝑥 = 𝑦 ) → 𝜑 )
5 simpr ( ( 𝜑𝑥 = 𝑦 ) → 𝑥 = 𝑦 )
6 3 4 5 3jca ( ( 𝜑𝑥 = 𝑦 ) → ( [ 𝑦 / 𝑥 ] 𝜑𝜑𝑥 = 𝑦 ) )
7 3simpc ( ( [ 𝑦 / 𝑥 ] 𝜑𝜑𝑥 = 𝑦 ) → ( 𝜑𝑥 = 𝑦 ) )
8 6 7 impbii ( ( 𝜑𝑥 = 𝑦 ) ↔ ( [ 𝑦 / 𝑥 ] 𝜑𝜑𝑥 = 𝑦 ) )