Description: Theorem *13.194 in WhiteheadRussell p. 179. (Contributed by Andrew Salmon, 3-Jun-2011)
Ref | Expression | ||
---|---|---|---|
Assertion | pm13.194 | ⊢ ( ( 𝜑 ∧ 𝑥 = 𝑦 ) ↔ ( [ 𝑦 / 𝑥 ] 𝜑 ∧ 𝜑 ∧ 𝑥 = 𝑦 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm13.13a | ⊢ ( ( 𝜑 ∧ 𝑥 = 𝑦 ) → [ 𝑦 / 𝑥 ] 𝜑 ) | |
2 | sbsbc | ⊢ ( [ 𝑦 / 𝑥 ] 𝜑 ↔ [ 𝑦 / 𝑥 ] 𝜑 ) | |
3 | 1 2 | sylibr | ⊢ ( ( 𝜑 ∧ 𝑥 = 𝑦 ) → [ 𝑦 / 𝑥 ] 𝜑 ) |
4 | simpl | ⊢ ( ( 𝜑 ∧ 𝑥 = 𝑦 ) → 𝜑 ) | |
5 | simpr | ⊢ ( ( 𝜑 ∧ 𝑥 = 𝑦 ) → 𝑥 = 𝑦 ) | |
6 | 3 4 5 | 3jca | ⊢ ( ( 𝜑 ∧ 𝑥 = 𝑦 ) → ( [ 𝑦 / 𝑥 ] 𝜑 ∧ 𝜑 ∧ 𝑥 = 𝑦 ) ) |
7 | 3simpc | ⊢ ( ( [ 𝑦 / 𝑥 ] 𝜑 ∧ 𝜑 ∧ 𝑥 = 𝑦 ) → ( 𝜑 ∧ 𝑥 = 𝑦 ) ) | |
8 | 6 7 | impbii | ⊢ ( ( 𝜑 ∧ 𝑥 = 𝑦 ) ↔ ( [ 𝑦 / 𝑥 ] 𝜑 ∧ 𝜑 ∧ 𝑥 = 𝑦 ) ) |