Description: Theorem *5.61 of WhiteheadRussell p. 125. (Contributed by NM, 3-Jan-2005) (Proof shortened by Wolf Lammen, 30-Jun-2013)
Ref | Expression | ||
---|---|---|---|
Assertion | pm5.61 | |- ( ( ( ph \/ ps ) /\ -. ps ) <-> ( ph /\ -. ps ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orel2 | |- ( -. ps -> ( ( ph \/ ps ) -> ph ) ) |
|
2 | orc | |- ( ph -> ( ph \/ ps ) ) |
|
3 | 1 2 | impbid1 | |- ( -. ps -> ( ( ph \/ ps ) <-> ph ) ) |
4 | 3 | pm5.32ri | |- ( ( ( ph \/ ps ) /\ -. ps ) <-> ( ph /\ -. ps ) ) |