Description: The set of polynomial matrices over a commutative ring is an associative algebra. (Contributed by AV, 16-Jun-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pmatring.p | |- P = ( Poly1 ` R ) | |
| pmatring.c | |- C = ( N Mat P ) | ||
| Assertion | pmatassa | |- ( ( N e. Fin /\ R e. CRing ) -> C e. AssAlg ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | pmatring.p | |- P = ( Poly1 ` R ) | |
| 2 | pmatring.c | |- C = ( N Mat P ) | |
| 3 | 1 | ply1crng | |- ( R e. CRing -> P e. CRing ) | 
| 4 | 2 | matassa | |- ( ( N e. Fin /\ P e. CRing ) -> C e. AssAlg ) | 
| 5 | 3 4 | sylan2 | |- ( ( N e. Fin /\ R e. CRing ) -> C e. AssAlg ) |