Metamath Proof Explorer
		
		
		
		Description:  The set of polynomial matrices over a commutative ring is an associative
       algebra.  (Contributed by AV, 16-Jun-2024)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | pmatring.p | ⊢ 𝑃  =  ( Poly1 ‘ 𝑅 ) | 
					
						|  |  | pmatring.c | ⊢ 𝐶  =  ( 𝑁  Mat  𝑃 ) | 
				
					|  | Assertion | pmatassa | ⊢  ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  →  𝐶  ∈  AssAlg ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pmatring.p | ⊢ 𝑃  =  ( Poly1 ‘ 𝑅 ) | 
						
							| 2 |  | pmatring.c | ⊢ 𝐶  =  ( 𝑁  Mat  𝑃 ) | 
						
							| 3 | 1 | ply1crng | ⊢ ( 𝑅  ∈  CRing  →  𝑃  ∈  CRing ) | 
						
							| 4 | 2 | matassa | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑃  ∈  CRing )  →  𝐶  ∈  AssAlg ) | 
						
							| 5 | 3 4 | sylan2 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  →  𝐶  ∈  AssAlg ) |