Description: The zero polynomial matrix over a ring represented as operation. (Contributed by AV, 16-Nov-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pmatring.p | ⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) | |
| pmatring.c | ⊢ 𝐶 = ( 𝑁 Mat 𝑃 ) | ||
| pmat0op.z | ⊢ 0 = ( 0g ‘ 𝑃 ) | ||
| Assertion | pmat0op | ⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( 0g ‘ 𝐶 ) = ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ 0 ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | pmatring.p | ⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) | |
| 2 | pmatring.c | ⊢ 𝐶 = ( 𝑁 Mat 𝑃 ) | |
| 3 | pmat0op.z | ⊢ 0 = ( 0g ‘ 𝑃 ) | |
| 4 | 1 | ply1ring | ⊢ ( 𝑅 ∈ Ring → 𝑃 ∈ Ring ) | 
| 5 | 2 3 | mat0op | ⊢ ( ( 𝑁 ∈ Fin ∧ 𝑃 ∈ Ring ) → ( 0g ‘ 𝐶 ) = ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ 0 ) ) | 
| 6 | 4 5 | sylan2 | ⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( 0g ‘ 𝐶 ) = ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ 0 ) ) |