Description: Lemma 2 for pmtr3ncom . (Contributed by AV, 17-Mar-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pmtr3ncom.t | |- T = ( pmTrsp ` D ) | |
| pmtr3ncom.f | |- F = ( T ` { X , Y } ) | ||
| pmtr3ncom.g | |- G = ( T ` { Y , Z } ) | ||
| Assertion | pmtr3ncomlem2 | |- ( ( D e. V /\ ( X e. D /\ Y e. D /\ Z e. D ) /\ ( X =/= Y /\ X =/= Z /\ Y =/= Z ) ) -> ( G o. F ) =/= ( F o. G ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | pmtr3ncom.t | |- T = ( pmTrsp ` D ) | |
| 2 | pmtr3ncom.f |  |-  F = ( T ` { X , Y } ) | |
| 3 | pmtr3ncom.g |  |-  G = ( T ` { Y , Z } ) | |
| 4 | 1 2 3 | pmtr3ncomlem1 | |- ( ( D e. V /\ ( X e. D /\ Y e. D /\ Z e. D ) /\ ( X =/= Y /\ X =/= Z /\ Y =/= Z ) ) -> ( ( G o. F ) ` X ) =/= ( ( F o. G ) ` X ) ) | 
| 5 | fveq1 | |- ( ( G o. F ) = ( F o. G ) -> ( ( G o. F ) ` X ) = ( ( F o. G ) ` X ) ) | |
| 6 | 5 | necon3i | |- ( ( ( G o. F ) ` X ) =/= ( ( F o. G ) ` X ) -> ( G o. F ) =/= ( F o. G ) ) | 
| 7 | 4 6 | syl | |- ( ( D e. V /\ ( X e. D /\ Y e. D /\ Z e. D ) /\ ( X =/= Y /\ X =/= Z /\ Y =/= Z ) ) -> ( G o. F ) =/= ( F o. G ) ) |