Metamath Proof Explorer


Theorem pmtr3ncomlem2

Description: Lemma 2 for pmtr3ncom . (Contributed by AV, 17-Mar-2018)

Ref Expression
Hypotheses pmtr3ncom.t T=pmTrspD
pmtr3ncom.f F=TXY
pmtr3ncom.g G=TYZ
Assertion pmtr3ncomlem2 DVXDYDZDXYXZYZGFFG

Proof

Step Hyp Ref Expression
1 pmtr3ncom.t T=pmTrspD
2 pmtr3ncom.f F=TXY
3 pmtr3ncom.g G=TYZ
4 1 2 3 pmtr3ncomlem1 DVXDYDZDXYXZYZGFXFGX
5 fveq1 GF=FGGFX=FGX
6 5 necon3i GFXFGXGFFG
7 4 6 syl DVXDYDZDXYXZYZGFFG