| Step |
Hyp |
Ref |
Expression |
| 1 |
|
posjidm.b |
|- B = ( Base ` K ) |
| 2 |
|
posjidm.j |
|- .\/ = ( join ` K ) |
| 3 |
|
eqid |
|- ( lub ` K ) = ( lub ` K ) |
| 4 |
|
simpl |
|- ( ( K e. Poset /\ X e. B ) -> K e. Poset ) |
| 5 |
|
simpr |
|- ( ( K e. Poset /\ X e. B ) -> X e. B ) |
| 6 |
3 2 4 5 5
|
joinval |
|- ( ( K e. Poset /\ X e. B ) -> ( X .\/ X ) = ( ( lub ` K ) ` { X , X } ) ) |
| 7 |
|
eqid |
|- ( le ` K ) = ( le ` K ) |
| 8 |
1 7
|
posref |
|- ( ( K e. Poset /\ X e. B ) -> X ( le ` K ) X ) |
| 9 |
|
eqidd |
|- ( ( K e. Poset /\ X e. B ) -> { X , X } = { X , X } ) |
| 10 |
4 1 5 5 7 8 9 3
|
lubpr |
|- ( ( K e. Poset /\ X e. B ) -> ( ( lub ` K ) ` { X , X } ) = X ) |
| 11 |
6 10
|
eqtrd |
|- ( ( K e. Poset /\ X e. B ) -> ( X .\/ X ) = X ) |