| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dfpprod2 |
|- pprod ( R , S ) = ( ( `' ( 1st |` ( _V X. _V ) ) o. ( R o. ( 1st |` ( _V X. _V ) ) ) ) i^i ( `' ( 2nd |` ( _V X. _V ) ) o. ( S o. ( 2nd |` ( _V X. _V ) ) ) ) ) |
| 2 |
|
dfpprod2 |
|- pprod ( `' R , `' S ) = ( ( `' ( 1st |` ( _V X. _V ) ) o. ( `' R o. ( 1st |` ( _V X. _V ) ) ) ) i^i ( `' ( 2nd |` ( _V X. _V ) ) o. ( `' S o. ( 2nd |` ( _V X. _V ) ) ) ) ) |
| 3 |
2
|
cnveqi |
|- `' pprod ( `' R , `' S ) = `' ( ( `' ( 1st |` ( _V X. _V ) ) o. ( `' R o. ( 1st |` ( _V X. _V ) ) ) ) i^i ( `' ( 2nd |` ( _V X. _V ) ) o. ( `' S o. ( 2nd |` ( _V X. _V ) ) ) ) ) |
| 4 |
|
cnvin |
|- `' ( ( `' ( 1st |` ( _V X. _V ) ) o. ( `' R o. ( 1st |` ( _V X. _V ) ) ) ) i^i ( `' ( 2nd |` ( _V X. _V ) ) o. ( `' S o. ( 2nd |` ( _V X. _V ) ) ) ) ) = ( `' ( `' ( 1st |` ( _V X. _V ) ) o. ( `' R o. ( 1st |` ( _V X. _V ) ) ) ) i^i `' ( `' ( 2nd |` ( _V X. _V ) ) o. ( `' S o. ( 2nd |` ( _V X. _V ) ) ) ) ) |
| 5 |
|
cnvco1 |
|- `' ( `' ( 1st |` ( _V X. _V ) ) o. ( `' R o. ( 1st |` ( _V X. _V ) ) ) ) = ( `' ( `' R o. ( 1st |` ( _V X. _V ) ) ) o. ( 1st |` ( _V X. _V ) ) ) |
| 6 |
|
cnvco1 |
|- `' ( `' R o. ( 1st |` ( _V X. _V ) ) ) = ( `' ( 1st |` ( _V X. _V ) ) o. R ) |
| 7 |
6
|
coeq1i |
|- ( `' ( `' R o. ( 1st |` ( _V X. _V ) ) ) o. ( 1st |` ( _V X. _V ) ) ) = ( ( `' ( 1st |` ( _V X. _V ) ) o. R ) o. ( 1st |` ( _V X. _V ) ) ) |
| 8 |
|
coass |
|- ( ( `' ( 1st |` ( _V X. _V ) ) o. R ) o. ( 1st |` ( _V X. _V ) ) ) = ( `' ( 1st |` ( _V X. _V ) ) o. ( R o. ( 1st |` ( _V X. _V ) ) ) ) |
| 9 |
5 7 8
|
3eqtri |
|- `' ( `' ( 1st |` ( _V X. _V ) ) o. ( `' R o. ( 1st |` ( _V X. _V ) ) ) ) = ( `' ( 1st |` ( _V X. _V ) ) o. ( R o. ( 1st |` ( _V X. _V ) ) ) ) |
| 10 |
|
cnvco1 |
|- `' ( `' ( 2nd |` ( _V X. _V ) ) o. ( `' S o. ( 2nd |` ( _V X. _V ) ) ) ) = ( `' ( `' S o. ( 2nd |` ( _V X. _V ) ) ) o. ( 2nd |` ( _V X. _V ) ) ) |
| 11 |
|
cnvco1 |
|- `' ( `' S o. ( 2nd |` ( _V X. _V ) ) ) = ( `' ( 2nd |` ( _V X. _V ) ) o. S ) |
| 12 |
11
|
coeq1i |
|- ( `' ( `' S o. ( 2nd |` ( _V X. _V ) ) ) o. ( 2nd |` ( _V X. _V ) ) ) = ( ( `' ( 2nd |` ( _V X. _V ) ) o. S ) o. ( 2nd |` ( _V X. _V ) ) ) |
| 13 |
|
coass |
|- ( ( `' ( 2nd |` ( _V X. _V ) ) o. S ) o. ( 2nd |` ( _V X. _V ) ) ) = ( `' ( 2nd |` ( _V X. _V ) ) o. ( S o. ( 2nd |` ( _V X. _V ) ) ) ) |
| 14 |
10 12 13
|
3eqtri |
|- `' ( `' ( 2nd |` ( _V X. _V ) ) o. ( `' S o. ( 2nd |` ( _V X. _V ) ) ) ) = ( `' ( 2nd |` ( _V X. _V ) ) o. ( S o. ( 2nd |` ( _V X. _V ) ) ) ) |
| 15 |
9 14
|
ineq12i |
|- ( `' ( `' ( 1st |` ( _V X. _V ) ) o. ( `' R o. ( 1st |` ( _V X. _V ) ) ) ) i^i `' ( `' ( 2nd |` ( _V X. _V ) ) o. ( `' S o. ( 2nd |` ( _V X. _V ) ) ) ) ) = ( ( `' ( 1st |` ( _V X. _V ) ) o. ( R o. ( 1st |` ( _V X. _V ) ) ) ) i^i ( `' ( 2nd |` ( _V X. _V ) ) o. ( S o. ( 2nd |` ( _V X. _V ) ) ) ) ) |
| 16 |
3 4 15
|
3eqtri |
|- `' pprod ( `' R , `' S ) = ( ( `' ( 1st |` ( _V X. _V ) ) o. ( R o. ( 1st |` ( _V X. _V ) ) ) ) i^i ( `' ( 2nd |` ( _V X. _V ) ) o. ( S o. ( 2nd |` ( _V X. _V ) ) ) ) ) |
| 17 |
1 16
|
eqtr4i |
|- pprod ( R , S ) = `' pprod ( `' R , `' S ) |