| Step |
Hyp |
Ref |
Expression |
| 1 |
|
relcnv |
|- Rel `' ( `' A o. B ) |
| 2 |
|
relco |
|- Rel ( `' B o. A ) |
| 3 |
|
vex |
|- z e. _V |
| 4 |
|
vex |
|- y e. _V |
| 5 |
3 4
|
brcnv |
|- ( z `' B y <-> y B z ) |
| 6 |
5
|
bicomi |
|- ( y B z <-> z `' B y ) |
| 7 |
|
vex |
|- x e. _V |
| 8 |
3 7
|
brcnv |
|- ( z `' A x <-> x A z ) |
| 9 |
6 8
|
anbi12ci |
|- ( ( y B z /\ z `' A x ) <-> ( x A z /\ z `' B y ) ) |
| 10 |
9
|
exbii |
|- ( E. z ( y B z /\ z `' A x ) <-> E. z ( x A z /\ z `' B y ) ) |
| 11 |
7 4
|
opelcnv |
|- ( <. x , y >. e. `' ( `' A o. B ) <-> <. y , x >. e. ( `' A o. B ) ) |
| 12 |
4 7
|
opelco |
|- ( <. y , x >. e. ( `' A o. B ) <-> E. z ( y B z /\ z `' A x ) ) |
| 13 |
11 12
|
bitri |
|- ( <. x , y >. e. `' ( `' A o. B ) <-> E. z ( y B z /\ z `' A x ) ) |
| 14 |
7 4
|
opelco |
|- ( <. x , y >. e. ( `' B o. A ) <-> E. z ( x A z /\ z `' B y ) ) |
| 15 |
10 13 14
|
3bitr4i |
|- ( <. x , y >. e. `' ( `' A o. B ) <-> <. x , y >. e. ( `' B o. A ) ) |
| 16 |
1 2 15
|
eqrelriiv |
|- `' ( `' A o. B ) = ( `' B o. A ) |