Metamath Proof Explorer


Theorem predasetex

Description: The predecessor class exists when A does. (Contributed by Scott Fenton, 8-Feb-2011)

Ref Expression
Hypothesis predasetex.1
|- A e. _V
Assertion predasetex
|- Pred ( R , A , X ) e. _V

Proof

Step Hyp Ref Expression
1 predasetex.1
 |-  A e. _V
2 df-pred
 |-  Pred ( R , A , X ) = ( A i^i ( `' R " { X } ) )
3 1 inex1
 |-  ( A i^i ( `' R " { X } ) ) e. _V
4 2 3 eqeltri
 |-  Pred ( R , A , X ) e. _V