Description: The predecessor class exists when A does. (Contributed by Scott Fenton, 8-Feb-2011)
Ref | Expression | ||
---|---|---|---|
Hypothesis | predasetex.1 | |- A e. _V |
|
Assertion | predasetex | |- Pred ( R , A , X ) e. _V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | predasetex.1 | |- A e. _V |
|
2 | df-pred | |- Pred ( R , A , X ) = ( A i^i ( `' R " { X } ) ) |
|
3 | 1 | inex1 | |- ( A i^i ( `' R " { X } ) ) e. _V |
4 | 2 3 | eqeltri | |- Pred ( R , A , X ) e. _V |