| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dffr3 |
|- ( R Fr A <-> A. x ( ( x C_ A /\ x =/= (/) ) -> E. y e. x ( x i^i ( `' R " { y } ) ) = (/) ) ) |
| 2 |
|
df-pred |
|- Pred ( R , x , y ) = ( x i^i ( `' R " { y } ) ) |
| 3 |
2
|
eqeq1i |
|- ( Pred ( R , x , y ) = (/) <-> ( x i^i ( `' R " { y } ) ) = (/) ) |
| 4 |
3
|
rexbii |
|- ( E. y e. x Pred ( R , x , y ) = (/) <-> E. y e. x ( x i^i ( `' R " { y } ) ) = (/) ) |
| 5 |
4
|
imbi2i |
|- ( ( ( x C_ A /\ x =/= (/) ) -> E. y e. x Pred ( R , x , y ) = (/) ) <-> ( ( x C_ A /\ x =/= (/) ) -> E. y e. x ( x i^i ( `' R " { y } ) ) = (/) ) ) |
| 6 |
5
|
albii |
|- ( A. x ( ( x C_ A /\ x =/= (/) ) -> E. y e. x Pred ( R , x , y ) = (/) ) <-> A. x ( ( x C_ A /\ x =/= (/) ) -> E. y e. x ( x i^i ( `' R " { y } ) ) = (/) ) ) |
| 7 |
1 6
|
bitr4i |
|- ( R Fr A <-> A. x ( ( x C_ A /\ x =/= (/) ) -> E. y e. x Pred ( R , x , y ) = (/) ) ) |