Metamath Proof Explorer


Theorem predun

Description: Union law for predecessor classes. (Contributed by Scott Fenton, 29-Mar-2011)

Ref Expression
Assertion predun
|- Pred ( R , ( A u. B ) , X ) = ( Pred ( R , A , X ) u. Pred ( R , B , X ) )

Proof

Step Hyp Ref Expression
1 indir
 |-  ( ( A u. B ) i^i ( `' R " { X } ) ) = ( ( A i^i ( `' R " { X } ) ) u. ( B i^i ( `' R " { X } ) ) )
2 df-pred
 |-  Pred ( R , ( A u. B ) , X ) = ( ( A u. B ) i^i ( `' R " { X } ) )
3 df-pred
 |-  Pred ( R , A , X ) = ( A i^i ( `' R " { X } ) )
4 df-pred
 |-  Pred ( R , B , X ) = ( B i^i ( `' R " { X } ) )
5 3 4 uneq12i
 |-  ( Pred ( R , A , X ) u. Pred ( R , B , X ) ) = ( ( A i^i ( `' R " { X } ) ) u. ( B i^i ( `' R " { X } ) ) )
6 1 2 5 3eqtr4i
 |-  Pred ( R , ( A u. B ) , X ) = ( Pred ( R , A , X ) u. Pred ( R , B , X ) )