Description: The preimage of a function value at X contains X . (Contributed by AV, 7-Mar-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | preimafvsnel | |- ( ( F Fn A /\ X e. A ) -> X e. ( `' F " { ( F ` X ) } ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | simpr | |- ( ( F Fn A /\ X e. A ) -> X e. A ) | |
| 2 | eqidd | |- ( ( F Fn A /\ X e. A ) -> ( F ` X ) = ( F ` X ) ) | |
| 3 | fniniseg |  |-  ( F Fn A -> ( X e. ( `' F " { ( F ` X ) } ) <-> ( X e. A /\ ( F ` X ) = ( F ` X ) ) ) ) | |
| 4 | 3 | adantr |  |-  ( ( F Fn A /\ X e. A ) -> ( X e. ( `' F " { ( F ` X ) } ) <-> ( X e. A /\ ( F ` X ) = ( F ` X ) ) ) ) | 
| 5 | 1 2 4 | mpbir2and |  |-  ( ( F Fn A /\ X e. A ) -> X e. ( `' F " { ( F ` X ) } ) ) |