Description: The preimage of a function value at X contains X . (Contributed by AV, 7-Mar-2024)
Ref | Expression | ||
---|---|---|---|
Assertion | preimafvsnel | |- ( ( F Fn A /\ X e. A ) -> X e. ( `' F " { ( F ` X ) } ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr | |- ( ( F Fn A /\ X e. A ) -> X e. A ) |
|
2 | eqidd | |- ( ( F Fn A /\ X e. A ) -> ( F ` X ) = ( F ` X ) ) |
|
3 | fniniseg | |- ( F Fn A -> ( X e. ( `' F " { ( F ` X ) } ) <-> ( X e. A /\ ( F ` X ) = ( F ` X ) ) ) ) |
|
4 | 3 | adantr | |- ( ( F Fn A /\ X e. A ) -> ( X e. ( `' F " { ( F ` X ) } ) <-> ( X e. A /\ ( F ` X ) = ( F ` X ) ) ) ) |
5 | 1 2 4 | mpbir2and | |- ( ( F Fn A /\ X e. A ) -> X e. ( `' F " { ( F ` X ) } ) ) |