Metamath Proof Explorer


Theorem preimafvsnel

Description: The preimage of a function value at X contains X . (Contributed by AV, 7-Mar-2024)

Ref Expression
Assertion preimafvsnel
|- ( ( F Fn A /\ X e. A ) -> X e. ( `' F " { ( F ` X ) } ) )

Proof

Step Hyp Ref Expression
1 simpr
 |-  ( ( F Fn A /\ X e. A ) -> X e. A )
2 eqidd
 |-  ( ( F Fn A /\ X e. A ) -> ( F ` X ) = ( F ` X ) )
3 fniniseg
 |-  ( F Fn A -> ( X e. ( `' F " { ( F ` X ) } ) <-> ( X e. A /\ ( F ` X ) = ( F ` X ) ) ) )
4 3 adantr
 |-  ( ( F Fn A /\ X e. A ) -> ( X e. ( `' F " { ( F ` X ) } ) <-> ( X e. A /\ ( F ` X ) = ( F ` X ) ) ) )
5 1 2 4 mpbir2and
 |-  ( ( F Fn A /\ X e. A ) -> X e. ( `' F " { ( F ` X ) } ) )