Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Alexander van der Vekens
Preimages of function values
preimafvsnel
Next ⟩
preimafvn0
Metamath Proof Explorer
Ascii
Unicode
Theorem
preimafvsnel
Description:
The preimage of a function value at
X
contains
X
.
(Contributed by
AV
, 7-Mar-2024)
Ref
Expression
Assertion
preimafvsnel
⊢
F
Fn
A
∧
X
∈
A
→
X
∈
F
-1
F
⁡
X
Proof
Step
Hyp
Ref
Expression
1
simpr
⊢
F
Fn
A
∧
X
∈
A
→
X
∈
A
2
eqidd
⊢
F
Fn
A
∧
X
∈
A
→
F
⁡
X
=
F
⁡
X
3
fniniseg
⊢
F
Fn
A
→
X
∈
F
-1
F
⁡
X
↔
X
∈
A
∧
F
⁡
X
=
F
⁡
X
4
3
adantr
⊢
F
Fn
A
∧
X
∈
A
→
X
∈
F
-1
F
⁡
X
↔
X
∈
A
∧
F
⁡
X
=
F
⁡
X
5
1
2
4
mpbir2and
⊢
F
Fn
A
∧
X
∈
A
→
X
∈
F
-1
F
⁡
X