Metamath Proof Explorer


Theorem preimafvsnel

Description: The preimage of a function value at X contains X . (Contributed by AV, 7-Mar-2024)

Ref Expression
Assertion preimafvsnel FFnAXAXF-1FX

Proof

Step Hyp Ref Expression
1 simpr FFnAXAXA
2 eqidd FFnAXAFX=FX
3 fniniseg FFnAXF-1FXXAFX=FX
4 3 adantr FFnAXAXF-1FXXAFX=FX
5 1 2 4 mpbir2and FFnAXAXF-1FX