Metamath Proof Explorer


Theorem preimafvn0

Description: The preimage of a function value is not empty. (Contributed by AV, 7-Mar-2024)

Ref Expression
Assertion preimafvn0 F Fn A X A F -1 F X

Proof

Step Hyp Ref Expression
1 preimafvsnel F Fn A X A X F -1 F X
2 1 ne0d F Fn A X A F -1 F X