Metamath Proof Explorer


Theorem uniimafveqt

Description: The union of the image of a subset S of the domain of a function with elements having the same function value is the function value at one of the elements of S . (Contributed by AV, 5-Mar-2024)

Ref Expression
Assertion uniimafveqt F : A B S A X S x S F x = F X F S = F X

Proof

Step Hyp Ref Expression
1 ffun F : A B Fun F
2 1 3ad2ant1 F : A B S A X S Fun F
3 2 adantr F : A B S A X S x S F x = F X Fun F
4 funiunfv Fun F y S F y = F S
5 3 4 syl F : A B S A X S x S F x = F X y S F y = F S
6 simp3 F : A B S A X S X S
7 fveqeq2 x = y F x = F X F y = F X
8 7 cbvralvw x S F x = F X y S F y = F X
9 8 biimpi x S F x = F X y S F y = F X
10 fveq2 y = X F y = F X
11 10 iuneqconst X S y S F y = F X y S F y = F X
12 6 9 11 syl2an F : A B S A X S x S F x = F X y S F y = F X
13 5 12 eqtr3d F : A B S A X S x S F x = F X F S = F X
14 13 ex F : A B S A X S x S F x = F X F S = F X