Metamath Proof Explorer


Theorem uniimafveqt

Description: The union of the image of a subset S of the domain of a function with elements having the same function value is the function value at one of the elements of S . (Contributed by AV, 5-Mar-2024)

Ref Expression
Assertion uniimafveqt
|- ( ( F : A --> B /\ S C_ A /\ X e. S ) -> ( A. x e. S ( F ` x ) = ( F ` X ) -> U. ( F " S ) = ( F ` X ) ) )

Proof

Step Hyp Ref Expression
1 ffun
 |-  ( F : A --> B -> Fun F )
2 1 3ad2ant1
 |-  ( ( F : A --> B /\ S C_ A /\ X e. S ) -> Fun F )
3 2 adantr
 |-  ( ( ( F : A --> B /\ S C_ A /\ X e. S ) /\ A. x e. S ( F ` x ) = ( F ` X ) ) -> Fun F )
4 funiunfv
 |-  ( Fun F -> U_ y e. S ( F ` y ) = U. ( F " S ) )
5 3 4 syl
 |-  ( ( ( F : A --> B /\ S C_ A /\ X e. S ) /\ A. x e. S ( F ` x ) = ( F ` X ) ) -> U_ y e. S ( F ` y ) = U. ( F " S ) )
6 simp3
 |-  ( ( F : A --> B /\ S C_ A /\ X e. S ) -> X e. S )
7 fveqeq2
 |-  ( x = y -> ( ( F ` x ) = ( F ` X ) <-> ( F ` y ) = ( F ` X ) ) )
8 7 cbvralvw
 |-  ( A. x e. S ( F ` x ) = ( F ` X ) <-> A. y e. S ( F ` y ) = ( F ` X ) )
9 8 biimpi
 |-  ( A. x e. S ( F ` x ) = ( F ` X ) -> A. y e. S ( F ` y ) = ( F ` X ) )
10 fveq2
 |-  ( y = X -> ( F ` y ) = ( F ` X ) )
11 10 iuneqconst
 |-  ( ( X e. S /\ A. y e. S ( F ` y ) = ( F ` X ) ) -> U_ y e. S ( F ` y ) = ( F ` X ) )
12 6 9 11 syl2an
 |-  ( ( ( F : A --> B /\ S C_ A /\ X e. S ) /\ A. x e. S ( F ` x ) = ( F ` X ) ) -> U_ y e. S ( F ` y ) = ( F ` X ) )
13 5 12 eqtr3d
 |-  ( ( ( F : A --> B /\ S C_ A /\ X e. S ) /\ A. x e. S ( F ` x ) = ( F ` X ) ) -> U. ( F " S ) = ( F ` X ) )
14 13 ex
 |-  ( ( F : A --> B /\ S C_ A /\ X e. S ) -> ( A. x e. S ( F ` x ) = ( F ` X ) -> U. ( F " S ) = ( F ` X ) ) )