| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dffn3 |  |-  ( F Fn A <-> F : A --> ran F ) | 
						
							| 2 | 1 | biimpi |  |-  ( F Fn A -> F : A --> ran F ) | 
						
							| 3 | 2 | adantr |  |-  ( ( F Fn A /\ X e. A ) -> F : A --> ran F ) | 
						
							| 4 |  | cnvimass |  |-  ( `' F " { ( F ` X ) } ) C_ dom F | 
						
							| 5 |  | fndm |  |-  ( F Fn A -> dom F = A ) | 
						
							| 6 | 4 5 | sseqtrid |  |-  ( F Fn A -> ( `' F " { ( F ` X ) } ) C_ A ) | 
						
							| 7 | 6 | adantr |  |-  ( ( F Fn A /\ X e. A ) -> ( `' F " { ( F ` X ) } ) C_ A ) | 
						
							| 8 |  | preimafvsnel |  |-  ( ( F Fn A /\ X e. A ) -> X e. ( `' F " { ( F ` X ) } ) ) | 
						
							| 9 | 3 7 8 | 3jca |  |-  ( ( F Fn A /\ X e. A ) -> ( F : A --> ran F /\ ( `' F " { ( F ` X ) } ) C_ A /\ X e. ( `' F " { ( F ` X ) } ) ) ) | 
						
							| 10 |  | fniniseg |  |-  ( F Fn A -> ( x e. ( `' F " { ( F ` X ) } ) <-> ( x e. A /\ ( F ` x ) = ( F ` X ) ) ) ) | 
						
							| 11 | 10 | adantr |  |-  ( ( F Fn A /\ X e. A ) -> ( x e. ( `' F " { ( F ` X ) } ) <-> ( x e. A /\ ( F ` x ) = ( F ` X ) ) ) ) | 
						
							| 12 |  | simpr |  |-  ( ( x e. A /\ ( F ` x ) = ( F ` X ) ) -> ( F ` x ) = ( F ` X ) ) | 
						
							| 13 | 11 12 | biimtrdi |  |-  ( ( F Fn A /\ X e. A ) -> ( x e. ( `' F " { ( F ` X ) } ) -> ( F ` x ) = ( F ` X ) ) ) | 
						
							| 14 | 13 | ralrimiv |  |-  ( ( F Fn A /\ X e. A ) -> A. x e. ( `' F " { ( F ` X ) } ) ( F ` x ) = ( F ` X ) ) | 
						
							| 15 |  | uniimafveqt |  |-  ( ( F : A --> ran F /\ ( `' F " { ( F ` X ) } ) C_ A /\ X e. ( `' F " { ( F ` X ) } ) ) -> ( A. x e. ( `' F " { ( F ` X ) } ) ( F ` x ) = ( F ` X ) -> U. ( F " ( `' F " { ( F ` X ) } ) ) = ( F ` X ) ) ) | 
						
							| 16 | 9 14 15 | sylc |  |-  ( ( F Fn A /\ X e. A ) -> U. ( F " ( `' F " { ( F ` X ) } ) ) = ( F ` X ) ) |