| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dffn3 |
|- ( F Fn A <-> F : A --> ran F ) |
| 2 |
1
|
biimpi |
|- ( F Fn A -> F : A --> ran F ) |
| 3 |
2
|
adantr |
|- ( ( F Fn A /\ X e. A ) -> F : A --> ran F ) |
| 4 |
|
cnvimass |
|- ( `' F " { ( F ` X ) } ) C_ dom F |
| 5 |
|
fndm |
|- ( F Fn A -> dom F = A ) |
| 6 |
4 5
|
sseqtrid |
|- ( F Fn A -> ( `' F " { ( F ` X ) } ) C_ A ) |
| 7 |
6
|
adantr |
|- ( ( F Fn A /\ X e. A ) -> ( `' F " { ( F ` X ) } ) C_ A ) |
| 8 |
|
preimafvsnel |
|- ( ( F Fn A /\ X e. A ) -> X e. ( `' F " { ( F ` X ) } ) ) |
| 9 |
3 7 8
|
3jca |
|- ( ( F Fn A /\ X e. A ) -> ( F : A --> ran F /\ ( `' F " { ( F ` X ) } ) C_ A /\ X e. ( `' F " { ( F ` X ) } ) ) ) |
| 10 |
|
fniniseg |
|- ( F Fn A -> ( x e. ( `' F " { ( F ` X ) } ) <-> ( x e. A /\ ( F ` x ) = ( F ` X ) ) ) ) |
| 11 |
10
|
adantr |
|- ( ( F Fn A /\ X e. A ) -> ( x e. ( `' F " { ( F ` X ) } ) <-> ( x e. A /\ ( F ` x ) = ( F ` X ) ) ) ) |
| 12 |
|
simpr |
|- ( ( x e. A /\ ( F ` x ) = ( F ` X ) ) -> ( F ` x ) = ( F ` X ) ) |
| 13 |
11 12
|
biimtrdi |
|- ( ( F Fn A /\ X e. A ) -> ( x e. ( `' F " { ( F ` X ) } ) -> ( F ` x ) = ( F ` X ) ) ) |
| 14 |
13
|
ralrimiv |
|- ( ( F Fn A /\ X e. A ) -> A. x e. ( `' F " { ( F ` X ) } ) ( F ` x ) = ( F ` X ) ) |
| 15 |
|
uniimafveqt |
|- ( ( F : A --> ran F /\ ( `' F " { ( F ` X ) } ) C_ A /\ X e. ( `' F " { ( F ` X ) } ) ) -> ( A. x e. ( `' F " { ( F ` X ) } ) ( F ` x ) = ( F ` X ) -> U. ( F " ( `' F " { ( F ` X ) } ) ) = ( F ` X ) ) ) |
| 16 |
9 14 15
|
sylc |
|- ( ( F Fn A /\ X e. A ) -> U. ( F " ( `' F " { ( F ` X ) } ) ) = ( F ` X ) ) |