Metamath Proof Explorer


Theorem uniimaprimaeqfv

Description: The union of the image of the preimage of a function value is the function value. (Contributed by AV, 12-Mar-2024)

Ref Expression
Assertion uniimaprimaeqfv
|- ( ( F Fn A /\ X e. A ) -> U. ( F " ( `' F " { ( F ` X ) } ) ) = ( F ` X ) )

Proof

Step Hyp Ref Expression
1 dffn3
 |-  ( F Fn A <-> F : A --> ran F )
2 1 biimpi
 |-  ( F Fn A -> F : A --> ran F )
3 2 adantr
 |-  ( ( F Fn A /\ X e. A ) -> F : A --> ran F )
4 cnvimass
 |-  ( `' F " { ( F ` X ) } ) C_ dom F
5 fndm
 |-  ( F Fn A -> dom F = A )
6 4 5 sseqtrid
 |-  ( F Fn A -> ( `' F " { ( F ` X ) } ) C_ A )
7 6 adantr
 |-  ( ( F Fn A /\ X e. A ) -> ( `' F " { ( F ` X ) } ) C_ A )
8 preimafvsnel
 |-  ( ( F Fn A /\ X e. A ) -> X e. ( `' F " { ( F ` X ) } ) )
9 3 7 8 3jca
 |-  ( ( F Fn A /\ X e. A ) -> ( F : A --> ran F /\ ( `' F " { ( F ` X ) } ) C_ A /\ X e. ( `' F " { ( F ` X ) } ) ) )
10 fniniseg
 |-  ( F Fn A -> ( x e. ( `' F " { ( F ` X ) } ) <-> ( x e. A /\ ( F ` x ) = ( F ` X ) ) ) )
11 10 adantr
 |-  ( ( F Fn A /\ X e. A ) -> ( x e. ( `' F " { ( F ` X ) } ) <-> ( x e. A /\ ( F ` x ) = ( F ` X ) ) ) )
12 simpr
 |-  ( ( x e. A /\ ( F ` x ) = ( F ` X ) ) -> ( F ` x ) = ( F ` X ) )
13 11 12 syl6bi
 |-  ( ( F Fn A /\ X e. A ) -> ( x e. ( `' F " { ( F ` X ) } ) -> ( F ` x ) = ( F ` X ) ) )
14 13 ralrimiv
 |-  ( ( F Fn A /\ X e. A ) -> A. x e. ( `' F " { ( F ` X ) } ) ( F ` x ) = ( F ` X ) )
15 uniimafveqt
 |-  ( ( F : A --> ran F /\ ( `' F " { ( F ` X ) } ) C_ A /\ X e. ( `' F " { ( F ` X ) } ) ) -> ( A. x e. ( `' F " { ( F ` X ) } ) ( F ` x ) = ( F ` X ) -> U. ( F " ( `' F " { ( F ` X ) } ) ) = ( F ` X ) ) )
16 9 14 15 sylc
 |-  ( ( F Fn A /\ X e. A ) -> U. ( F " ( `' F " { ( F ` X ) } ) ) = ( F ` X ) )