Metamath Proof Explorer


Theorem setpreimafvex

Description: The class P of all preimages of function values is a set. (Contributed by AV, 10-Mar-2024)

Ref Expression
Hypothesis setpreimafvex.p
|- P = { z | E. x e. A z = ( `' F " { ( F ` x ) } ) }
Assertion setpreimafvex
|- ( A e. V -> P e. _V )

Proof

Step Hyp Ref Expression
1 setpreimafvex.p
 |-  P = { z | E. x e. A z = ( `' F " { ( F ` x ) } ) }
2 abrexexg
 |-  ( A e. V -> { z | E. x e. A z = ( `' F " { ( F ` x ) } ) } e. _V )
3 1 2 eqeltrid
 |-  ( A e. V -> P e. _V )