Metamath Proof Explorer


Theorem setpreimafvex

Description: The class P of all preimages of function values is a set. (Contributed by AV, 10-Mar-2024)

Ref Expression
Hypothesis setpreimafvex.p P = z | x A z = F -1 F x
Assertion setpreimafvex A V P V

Proof

Step Hyp Ref Expression
1 setpreimafvex.p P = z | x A z = F -1 F x
2 abrexexg A V z | x A z = F -1 F x V
3 1 2 eqeltrid A V P V