Metamath Proof Explorer


Theorem elsetpreimafvb

Description: The characterization of an element of the class P of all preimages of function values. (Contributed by AV, 10-Mar-2024)

Ref Expression
Hypothesis setpreimafvex.p P=z|xAz=F-1Fx
Assertion elsetpreimafvb SVSPxAS=F-1Fx

Proof

Step Hyp Ref Expression
1 setpreimafvex.p P=z|xAz=F-1Fx
2 1 eleq2i SPSz|xAz=F-1Fx
3 eqeq1 z=Sz=F-1FxS=F-1Fx
4 3 rexbidv z=SxAz=F-1FxxAS=F-1Fx
5 4 elabg SVSz|xAz=F-1FxxAS=F-1Fx
6 2 5 bitrid SVSPxAS=F-1Fx