Metamath Proof Explorer


Theorem elsetpreimafvb

Description: The characterization of an element of the class P of all preimages of function values. (Contributed by AV, 10-Mar-2024)

Ref Expression
Hypothesis setpreimafvex.p P = z | x A z = F -1 F x
Assertion elsetpreimafvb S V S P x A S = F -1 F x

Proof

Step Hyp Ref Expression
1 setpreimafvex.p P = z | x A z = F -1 F x
2 1 eleq2i S P S z | x A z = F -1 F x
3 eqeq1 z = S z = F -1 F x S = F -1 F x
4 3 rexbidv z = S x A z = F -1 F x x A S = F -1 F x
5 4 elabg S V S z | x A z = F -1 F x x A S = F -1 F x
6 2 5 syl5bb S V S P x A S = F -1 F x