Metamath Proof Explorer


Theorem elsetpreimafv

Description: An element of the class P of all preimages of function values. (Contributed by AV, 8-Mar-2024)

Ref Expression
Hypothesis setpreimafvex.p P = z | x A z = F -1 F x
Assertion elsetpreimafv S P x A S = F -1 F x

Proof

Step Hyp Ref Expression
1 setpreimafvex.p P = z | x A z = F -1 F x
2 1 elsetpreimafvb S P S P x A S = F -1 F x
3 2 ibi S P x A S = F -1 F x