Description: An element of the class P of all preimages of function values. (Contributed by AV, 8-Mar-2024)
Ref | Expression | ||
---|---|---|---|
Hypothesis | setpreimafvex.p | ⊢ 𝑃 = { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑥 ) } ) } | |
Assertion | elsetpreimafv | ⊢ ( 𝑆 ∈ 𝑃 → ∃ 𝑥 ∈ 𝐴 𝑆 = ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑥 ) } ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | setpreimafvex.p | ⊢ 𝑃 = { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑥 ) } ) } | |
2 | 1 | elsetpreimafvb | ⊢ ( 𝑆 ∈ 𝑃 → ( 𝑆 ∈ 𝑃 ↔ ∃ 𝑥 ∈ 𝐴 𝑆 = ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑥 ) } ) ) ) |
3 | 2 | ibi | ⊢ ( 𝑆 ∈ 𝑃 → ∃ 𝑥 ∈ 𝐴 𝑆 = ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑥 ) } ) ) |