Metamath Proof Explorer


Theorem elsetpreimafv

Description: An element of the class P of all preimages of function values. (Contributed by AV, 8-Mar-2024)

Ref Expression
Hypothesis setpreimafvex.p 𝑃 = { 𝑧 ∣ ∃ 𝑥𝐴 𝑧 = ( 𝐹 “ { ( 𝐹𝑥 ) } ) }
Assertion elsetpreimafv ( 𝑆𝑃 → ∃ 𝑥𝐴 𝑆 = ( 𝐹 “ { ( 𝐹𝑥 ) } ) )

Proof

Step Hyp Ref Expression
1 setpreimafvex.p 𝑃 = { 𝑧 ∣ ∃ 𝑥𝐴 𝑧 = ( 𝐹 “ { ( 𝐹𝑥 ) } ) }
2 1 elsetpreimafvb ( 𝑆𝑃 → ( 𝑆𝑃 ↔ ∃ 𝑥𝐴 𝑆 = ( 𝐹 “ { ( 𝐹𝑥 ) } ) ) )
3 2 ibi ( 𝑆𝑃 → ∃ 𝑥𝐴 𝑆 = ( 𝐹 “ { ( 𝐹𝑥 ) } ) )