Metamath Proof Explorer


Theorem elsetpreimafv

Description: An element of the class P of all preimages of function values. (Contributed by AV, 8-Mar-2024)

Ref Expression
Hypothesis setpreimafvex.p
|- P = { z | E. x e. A z = ( `' F " { ( F ` x ) } ) }
Assertion elsetpreimafv
|- ( S e. P -> E. x e. A S = ( `' F " { ( F ` x ) } ) )

Proof

Step Hyp Ref Expression
1 setpreimafvex.p
 |-  P = { z | E. x e. A z = ( `' F " { ( F ` x ) } ) }
2 1 elsetpreimafvb
 |-  ( S e. P -> ( S e. P <-> E. x e. A S = ( `' F " { ( F ` x ) } ) ) )
3 2 ibi
 |-  ( S e. P -> E. x e. A S = ( `' F " { ( F ` x ) } ) )