| Step |
Hyp |
Ref |
Expression |
| 1 |
|
setpreimafvex.p |
|- P = { z | E. x e. A z = ( `' F " { ( F ` x ) } ) } |
| 2 |
1
|
elsetpreimafv |
|- ( S e. P -> E. x e. A S = ( `' F " { ( F ` x ) } ) ) |
| 3 |
|
cnvimass |
|- ( `' F " { ( F ` x ) } ) C_ dom F |
| 4 |
|
fndm |
|- ( F Fn A -> dom F = A ) |
| 5 |
3 4
|
sseqtrid |
|- ( F Fn A -> ( `' F " { ( F ` x ) } ) C_ A ) |
| 6 |
5
|
adantr |
|- ( ( F Fn A /\ x e. A ) -> ( `' F " { ( F ` x ) } ) C_ A ) |
| 7 |
|
sseq1 |
|- ( S = ( `' F " { ( F ` x ) } ) -> ( S C_ A <-> ( `' F " { ( F ` x ) } ) C_ A ) ) |
| 8 |
6 7
|
syl5ibrcom |
|- ( ( F Fn A /\ x e. A ) -> ( S = ( `' F " { ( F ` x ) } ) -> S C_ A ) ) |
| 9 |
8
|
expcom |
|- ( x e. A -> ( F Fn A -> ( S = ( `' F " { ( F ` x ) } ) -> S C_ A ) ) ) |
| 10 |
9
|
com23 |
|- ( x e. A -> ( S = ( `' F " { ( F ` x ) } ) -> ( F Fn A -> S C_ A ) ) ) |
| 11 |
10
|
rexlimiv |
|- ( E. x e. A S = ( `' F " { ( F ` x ) } ) -> ( F Fn A -> S C_ A ) ) |
| 12 |
2 11
|
syl |
|- ( S e. P -> ( F Fn A -> S C_ A ) ) |
| 13 |
12
|
impcom |
|- ( ( F Fn A /\ S e. P ) -> S C_ A ) |