Metamath Proof Explorer


Theorem elsetpreimafvssdm

Description: An element of the class P of all preimages of function values is a subset of the domain of the function. (Contributed by AV, 8-Mar-2024)

Ref Expression
Hypothesis setpreimafvex.p
|- P = { z | E. x e. A z = ( `' F " { ( F ` x ) } ) }
Assertion elsetpreimafvssdm
|- ( ( F Fn A /\ S e. P ) -> S C_ A )

Proof

Step Hyp Ref Expression
1 setpreimafvex.p
 |-  P = { z | E. x e. A z = ( `' F " { ( F ` x ) } ) }
2 1 elsetpreimafv
 |-  ( S e. P -> E. x e. A S = ( `' F " { ( F ` x ) } ) )
3 cnvimass
 |-  ( `' F " { ( F ` x ) } ) C_ dom F
4 fndm
 |-  ( F Fn A -> dom F = A )
5 3 4 sseqtrid
 |-  ( F Fn A -> ( `' F " { ( F ` x ) } ) C_ A )
6 5 adantr
 |-  ( ( F Fn A /\ x e. A ) -> ( `' F " { ( F ` x ) } ) C_ A )
7 sseq1
 |-  ( S = ( `' F " { ( F ` x ) } ) -> ( S C_ A <-> ( `' F " { ( F ` x ) } ) C_ A ) )
8 6 7 syl5ibrcom
 |-  ( ( F Fn A /\ x e. A ) -> ( S = ( `' F " { ( F ` x ) } ) -> S C_ A ) )
9 8 expcom
 |-  ( x e. A -> ( F Fn A -> ( S = ( `' F " { ( F ` x ) } ) -> S C_ A ) ) )
10 9 com23
 |-  ( x e. A -> ( S = ( `' F " { ( F ` x ) } ) -> ( F Fn A -> S C_ A ) ) )
11 10 rexlimiv
 |-  ( E. x e. A S = ( `' F " { ( F ` x ) } ) -> ( F Fn A -> S C_ A ) )
12 2 11 syl
 |-  ( S e. P -> ( F Fn A -> S C_ A ) )
13 12 impcom
 |-  ( ( F Fn A /\ S e. P ) -> S C_ A )