| Step | Hyp | Ref | Expression | 
						
							| 1 |  | setpreimafvex.p |  |-  P = { z | E. x e. A z = ( `' F " { ( F ` x ) } ) } | 
						
							| 2 | 1 | elsetpreimafv |  |-  ( S e. P -> E. x e. A S = ( `' F " { ( F ` x ) } ) ) | 
						
							| 3 |  | cnvimass |  |-  ( `' F " { ( F ` x ) } ) C_ dom F | 
						
							| 4 |  | fndm |  |-  ( F Fn A -> dom F = A ) | 
						
							| 5 | 3 4 | sseqtrid |  |-  ( F Fn A -> ( `' F " { ( F ` x ) } ) C_ A ) | 
						
							| 6 | 5 | adantr |  |-  ( ( F Fn A /\ x e. A ) -> ( `' F " { ( F ` x ) } ) C_ A ) | 
						
							| 7 |  | sseq1 |  |-  ( S = ( `' F " { ( F ` x ) } ) -> ( S C_ A <-> ( `' F " { ( F ` x ) } ) C_ A ) ) | 
						
							| 8 | 6 7 | syl5ibrcom |  |-  ( ( F Fn A /\ x e. A ) -> ( S = ( `' F " { ( F ` x ) } ) -> S C_ A ) ) | 
						
							| 9 | 8 | expcom |  |-  ( x e. A -> ( F Fn A -> ( S = ( `' F " { ( F ` x ) } ) -> S C_ A ) ) ) | 
						
							| 10 | 9 | com23 |  |-  ( x e. A -> ( S = ( `' F " { ( F ` x ) } ) -> ( F Fn A -> S C_ A ) ) ) | 
						
							| 11 | 10 | rexlimiv |  |-  ( E. x e. A S = ( `' F " { ( F ` x ) } ) -> ( F Fn A -> S C_ A ) ) | 
						
							| 12 | 2 11 | syl |  |-  ( S e. P -> ( F Fn A -> S C_ A ) ) | 
						
							| 13 | 12 | impcom |  |-  ( ( F Fn A /\ S e. P ) -> S C_ A ) |