| Step | Hyp | Ref | Expression | 
						
							| 1 |  | setpreimafvex.p |  |-  P = { z | E. x e. A z = ( `' F " { ( F ` x ) } ) } | 
						
							| 2 |  | preimafvsnel |  |-  ( ( F Fn A /\ x e. A ) -> x e. ( `' F " { ( F ` x ) } ) ) | 
						
							| 3 | 2 | adantrr |  |-  ( ( F Fn A /\ ( x e. A /\ S = ( `' F " { ( F ` x ) } ) ) ) -> x e. ( `' F " { ( F ` x ) } ) ) | 
						
							| 4 |  | eleq2 |  |-  ( S = ( `' F " { ( F ` x ) } ) -> ( x e. S <-> x e. ( `' F " { ( F ` x ) } ) ) ) | 
						
							| 5 | 4 | ad2antll |  |-  ( ( F Fn A /\ ( x e. A /\ S = ( `' F " { ( F ` x ) } ) ) ) -> ( x e. S <-> x e. ( `' F " { ( F ` x ) } ) ) ) | 
						
							| 6 | 3 5 | mpbird |  |-  ( ( F Fn A /\ ( x e. A /\ S = ( `' F " { ( F ` x ) } ) ) ) -> x e. S ) | 
						
							| 7 |  | simprr |  |-  ( ( F Fn A /\ ( x e. A /\ S = ( `' F " { ( F ` x ) } ) ) ) -> S = ( `' F " { ( F ` x ) } ) ) | 
						
							| 8 | 6 7 | jca |  |-  ( ( F Fn A /\ ( x e. A /\ S = ( `' F " { ( F ` x ) } ) ) ) -> ( x e. S /\ S = ( `' F " { ( F ` x ) } ) ) ) | 
						
							| 9 | 8 | ex |  |-  ( F Fn A -> ( ( x e. A /\ S = ( `' F " { ( F ` x ) } ) ) -> ( x e. S /\ S = ( `' F " { ( F ` x ) } ) ) ) ) | 
						
							| 10 | 9 | reximdv2 |  |-  ( F Fn A -> ( E. x e. A S = ( `' F " { ( F ` x ) } ) -> E. x e. S S = ( `' F " { ( F ` x ) } ) ) ) | 
						
							| 11 | 1 | elsetpreimafv |  |-  ( S e. P -> E. x e. A S = ( `' F " { ( F ` x ) } ) ) | 
						
							| 12 | 10 11 | impel |  |-  ( ( F Fn A /\ S e. P ) -> E. x e. S S = ( `' F " { ( F ` x ) } ) ) |