Step |
Hyp |
Ref |
Expression |
1 |
|
setpreimafvex.p |
|- P = { z | E. x e. A z = ( `' F " { ( F ` x ) } ) } |
2 |
|
preimafvsnel |
|- ( ( F Fn A /\ x e. A ) -> x e. ( `' F " { ( F ` x ) } ) ) |
3 |
2
|
adantrr |
|- ( ( F Fn A /\ ( x e. A /\ S = ( `' F " { ( F ` x ) } ) ) ) -> x e. ( `' F " { ( F ` x ) } ) ) |
4 |
|
eleq2 |
|- ( S = ( `' F " { ( F ` x ) } ) -> ( x e. S <-> x e. ( `' F " { ( F ` x ) } ) ) ) |
5 |
4
|
ad2antll |
|- ( ( F Fn A /\ ( x e. A /\ S = ( `' F " { ( F ` x ) } ) ) ) -> ( x e. S <-> x e. ( `' F " { ( F ` x ) } ) ) ) |
6 |
3 5
|
mpbird |
|- ( ( F Fn A /\ ( x e. A /\ S = ( `' F " { ( F ` x ) } ) ) ) -> x e. S ) |
7 |
|
simprr |
|- ( ( F Fn A /\ ( x e. A /\ S = ( `' F " { ( F ` x ) } ) ) ) -> S = ( `' F " { ( F ` x ) } ) ) |
8 |
6 7
|
jca |
|- ( ( F Fn A /\ ( x e. A /\ S = ( `' F " { ( F ` x ) } ) ) ) -> ( x e. S /\ S = ( `' F " { ( F ` x ) } ) ) ) |
9 |
8
|
ex |
|- ( F Fn A -> ( ( x e. A /\ S = ( `' F " { ( F ` x ) } ) ) -> ( x e. S /\ S = ( `' F " { ( F ` x ) } ) ) ) ) |
10 |
9
|
reximdv2 |
|- ( F Fn A -> ( E. x e. A S = ( `' F " { ( F ` x ) } ) -> E. x e. S S = ( `' F " { ( F ` x ) } ) ) ) |
11 |
1
|
elsetpreimafv |
|- ( S e. P -> E. x e. A S = ( `' F " { ( F ` x ) } ) ) |
12 |
10 11
|
impel |
|- ( ( F Fn A /\ S e. P ) -> E. x e. S S = ( `' F " { ( F ` x ) } ) ) |