| Step | Hyp | Ref | Expression | 
						
							| 1 |  | setpreimafvex.p |  |-  P = { z | E. x e. A z = ( `' F " { ( F ` x ) } ) } | 
						
							| 2 |  | id |  |-  ( X e. A -> X e. A ) | 
						
							| 3 |  | fveq2 |  |-  ( x = X -> ( F ` x ) = ( F ` X ) ) | 
						
							| 4 | 3 | sneqd |  |-  ( x = X -> { ( F ` x ) } = { ( F ` X ) } ) | 
						
							| 5 | 4 | imaeq2d |  |-  ( x = X -> ( `' F " { ( F ` x ) } ) = ( `' F " { ( F ` X ) } ) ) | 
						
							| 6 | 5 | eqeq2d |  |-  ( x = X -> ( ( `' F " { ( F ` X ) } ) = ( `' F " { ( F ` x ) } ) <-> ( `' F " { ( F ` X ) } ) = ( `' F " { ( F ` X ) } ) ) ) | 
						
							| 7 | 6 | adantl |  |-  ( ( X e. A /\ x = X ) -> ( ( `' F " { ( F ` X ) } ) = ( `' F " { ( F ` x ) } ) <-> ( `' F " { ( F ` X ) } ) = ( `' F " { ( F ` X ) } ) ) ) | 
						
							| 8 |  | eqidd |  |-  ( X e. A -> ( `' F " { ( F ` X ) } ) = ( `' F " { ( F ` X ) } ) ) | 
						
							| 9 | 2 7 8 | rspcedvd |  |-  ( X e. A -> E. x e. A ( `' F " { ( F ` X ) } ) = ( `' F " { ( F ` x ) } ) ) | 
						
							| 10 | 9 | 3ad2ant3 |  |-  ( ( F Fn A /\ A e. V /\ X e. A ) -> E. x e. A ( `' F " { ( F ` X ) } ) = ( `' F " { ( F ` x ) } ) ) | 
						
							| 11 |  | fnex |  |-  ( ( F Fn A /\ A e. V ) -> F e. _V ) | 
						
							| 12 |  | cnvexg |  |-  ( F e. _V -> `' F e. _V ) | 
						
							| 13 |  | imaexg |  |-  ( `' F e. _V -> ( `' F " { ( F ` X ) } ) e. _V ) | 
						
							| 14 | 11 12 13 | 3syl |  |-  ( ( F Fn A /\ A e. V ) -> ( `' F " { ( F ` X ) } ) e. _V ) | 
						
							| 15 | 14 | 3adant3 |  |-  ( ( F Fn A /\ A e. V /\ X e. A ) -> ( `' F " { ( F ` X ) } ) e. _V ) | 
						
							| 16 | 1 | elsetpreimafvb |  |-  ( ( `' F " { ( F ` X ) } ) e. _V -> ( ( `' F " { ( F ` X ) } ) e. P <-> E. x e. A ( `' F " { ( F ` X ) } ) = ( `' F " { ( F ` x ) } ) ) ) | 
						
							| 17 | 15 16 | syl |  |-  ( ( F Fn A /\ A e. V /\ X e. A ) -> ( ( `' F " { ( F ` X ) } ) e. P <-> E. x e. A ( `' F " { ( F ` X ) } ) = ( `' F " { ( F ` x ) } ) ) ) | 
						
							| 18 | 10 17 | mpbird |  |-  ( ( F Fn A /\ A e. V /\ X e. A ) -> ( `' F " { ( F ` X ) } ) e. P ) |