Metamath Proof Explorer


Theorem preimafvelsetpreimafv

Description: The preimage of a function value is an element of the class P of all preimages of function values. (Contributed by AV, 10-Mar-2024)

Ref Expression
Hypothesis setpreimafvex.p
|- P = { z | E. x e. A z = ( `' F " { ( F ` x ) } ) }
Assertion preimafvelsetpreimafv
|- ( ( F Fn A /\ A e. V /\ X e. A ) -> ( `' F " { ( F ` X ) } ) e. P )

Proof

Step Hyp Ref Expression
1 setpreimafvex.p
 |-  P = { z | E. x e. A z = ( `' F " { ( F ` x ) } ) }
2 id
 |-  ( X e. A -> X e. A )
3 fveq2
 |-  ( x = X -> ( F ` x ) = ( F ` X ) )
4 3 sneqd
 |-  ( x = X -> { ( F ` x ) } = { ( F ` X ) } )
5 4 imaeq2d
 |-  ( x = X -> ( `' F " { ( F ` x ) } ) = ( `' F " { ( F ` X ) } ) )
6 5 eqeq2d
 |-  ( x = X -> ( ( `' F " { ( F ` X ) } ) = ( `' F " { ( F ` x ) } ) <-> ( `' F " { ( F ` X ) } ) = ( `' F " { ( F ` X ) } ) ) )
7 6 adantl
 |-  ( ( X e. A /\ x = X ) -> ( ( `' F " { ( F ` X ) } ) = ( `' F " { ( F ` x ) } ) <-> ( `' F " { ( F ` X ) } ) = ( `' F " { ( F ` X ) } ) ) )
8 eqidd
 |-  ( X e. A -> ( `' F " { ( F ` X ) } ) = ( `' F " { ( F ` X ) } ) )
9 2 7 8 rspcedvd
 |-  ( X e. A -> E. x e. A ( `' F " { ( F ` X ) } ) = ( `' F " { ( F ` x ) } ) )
10 9 3ad2ant3
 |-  ( ( F Fn A /\ A e. V /\ X e. A ) -> E. x e. A ( `' F " { ( F ` X ) } ) = ( `' F " { ( F ` x ) } ) )
11 fnex
 |-  ( ( F Fn A /\ A e. V ) -> F e. _V )
12 cnvexg
 |-  ( F e. _V -> `' F e. _V )
13 imaexg
 |-  ( `' F e. _V -> ( `' F " { ( F ` X ) } ) e. _V )
14 11 12 13 3syl
 |-  ( ( F Fn A /\ A e. V ) -> ( `' F " { ( F ` X ) } ) e. _V )
15 14 3adant3
 |-  ( ( F Fn A /\ A e. V /\ X e. A ) -> ( `' F " { ( F ` X ) } ) e. _V )
16 1 elsetpreimafvb
 |-  ( ( `' F " { ( F ` X ) } ) e. _V -> ( ( `' F " { ( F ` X ) } ) e. P <-> E. x e. A ( `' F " { ( F ` X ) } ) = ( `' F " { ( F ` x ) } ) ) )
17 15 16 syl
 |-  ( ( F Fn A /\ A e. V /\ X e. A ) -> ( ( `' F " { ( F ` X ) } ) e. P <-> E. x e. A ( `' F " { ( F ` X ) } ) = ( `' F " { ( F ` x ) } ) ) )
18 10 17 mpbird
 |-  ( ( F Fn A /\ A e. V /\ X e. A ) -> ( `' F " { ( F ` X ) } ) e. P )