Step |
Hyp |
Ref |
Expression |
1 |
|
setpreimafvex.p |
|- P = { z | E. x e. A z = ( `' F " { ( F ` x ) } ) } |
2 |
|
id |
|- ( X e. A -> X e. A ) |
3 |
|
fveq2 |
|- ( x = X -> ( F ` x ) = ( F ` X ) ) |
4 |
3
|
sneqd |
|- ( x = X -> { ( F ` x ) } = { ( F ` X ) } ) |
5 |
4
|
imaeq2d |
|- ( x = X -> ( `' F " { ( F ` x ) } ) = ( `' F " { ( F ` X ) } ) ) |
6 |
5
|
eqeq2d |
|- ( x = X -> ( ( `' F " { ( F ` X ) } ) = ( `' F " { ( F ` x ) } ) <-> ( `' F " { ( F ` X ) } ) = ( `' F " { ( F ` X ) } ) ) ) |
7 |
6
|
adantl |
|- ( ( X e. A /\ x = X ) -> ( ( `' F " { ( F ` X ) } ) = ( `' F " { ( F ` x ) } ) <-> ( `' F " { ( F ` X ) } ) = ( `' F " { ( F ` X ) } ) ) ) |
8 |
|
eqidd |
|- ( X e. A -> ( `' F " { ( F ` X ) } ) = ( `' F " { ( F ` X ) } ) ) |
9 |
2 7 8
|
rspcedvd |
|- ( X e. A -> E. x e. A ( `' F " { ( F ` X ) } ) = ( `' F " { ( F ` x ) } ) ) |
10 |
9
|
3ad2ant3 |
|- ( ( F Fn A /\ A e. V /\ X e. A ) -> E. x e. A ( `' F " { ( F ` X ) } ) = ( `' F " { ( F ` x ) } ) ) |
11 |
|
fnex |
|- ( ( F Fn A /\ A e. V ) -> F e. _V ) |
12 |
|
cnvexg |
|- ( F e. _V -> `' F e. _V ) |
13 |
|
imaexg |
|- ( `' F e. _V -> ( `' F " { ( F ` X ) } ) e. _V ) |
14 |
11 12 13
|
3syl |
|- ( ( F Fn A /\ A e. V ) -> ( `' F " { ( F ` X ) } ) e. _V ) |
15 |
14
|
3adant3 |
|- ( ( F Fn A /\ A e. V /\ X e. A ) -> ( `' F " { ( F ` X ) } ) e. _V ) |
16 |
1
|
elsetpreimafvb |
|- ( ( `' F " { ( F ` X ) } ) e. _V -> ( ( `' F " { ( F ` X ) } ) e. P <-> E. x e. A ( `' F " { ( F ` X ) } ) = ( `' F " { ( F ` x ) } ) ) ) |
17 |
15 16
|
syl |
|- ( ( F Fn A /\ A e. V /\ X e. A ) -> ( ( `' F " { ( F ` X ) } ) e. P <-> E. x e. A ( `' F " { ( F ` X ) } ) = ( `' F " { ( F ` x ) } ) ) ) |
18 |
10 17
|
mpbird |
|- ( ( F Fn A /\ A e. V /\ X e. A ) -> ( `' F " { ( F ` X ) } ) e. P ) |