Metamath Proof Explorer


Theorem preimafvelsetpreimafv

Description: The preimage of a function value is an element of the class P of all preimages of function values. (Contributed by AV, 10-Mar-2024)

Ref Expression
Hypothesis setpreimafvex.p 𝑃 = { 𝑧 ∣ ∃ 𝑥𝐴 𝑧 = ( 𝐹 “ { ( 𝐹𝑥 ) } ) }
Assertion preimafvelsetpreimafv ( ( 𝐹 Fn 𝐴𝐴𝑉𝑋𝐴 ) → ( 𝐹 “ { ( 𝐹𝑋 ) } ) ∈ 𝑃 )

Proof

Step Hyp Ref Expression
1 setpreimafvex.p 𝑃 = { 𝑧 ∣ ∃ 𝑥𝐴 𝑧 = ( 𝐹 “ { ( 𝐹𝑥 ) } ) }
2 id ( 𝑋𝐴𝑋𝐴 )
3 fveq2 ( 𝑥 = 𝑋 → ( 𝐹𝑥 ) = ( 𝐹𝑋 ) )
4 3 sneqd ( 𝑥 = 𝑋 → { ( 𝐹𝑥 ) } = { ( 𝐹𝑋 ) } )
5 4 imaeq2d ( 𝑥 = 𝑋 → ( 𝐹 “ { ( 𝐹𝑥 ) } ) = ( 𝐹 “ { ( 𝐹𝑋 ) } ) )
6 5 eqeq2d ( 𝑥 = 𝑋 → ( ( 𝐹 “ { ( 𝐹𝑋 ) } ) = ( 𝐹 “ { ( 𝐹𝑥 ) } ) ↔ ( 𝐹 “ { ( 𝐹𝑋 ) } ) = ( 𝐹 “ { ( 𝐹𝑋 ) } ) ) )
7 6 adantl ( ( 𝑋𝐴𝑥 = 𝑋 ) → ( ( 𝐹 “ { ( 𝐹𝑋 ) } ) = ( 𝐹 “ { ( 𝐹𝑥 ) } ) ↔ ( 𝐹 “ { ( 𝐹𝑋 ) } ) = ( 𝐹 “ { ( 𝐹𝑋 ) } ) ) )
8 eqidd ( 𝑋𝐴 → ( 𝐹 “ { ( 𝐹𝑋 ) } ) = ( 𝐹 “ { ( 𝐹𝑋 ) } ) )
9 2 7 8 rspcedvd ( 𝑋𝐴 → ∃ 𝑥𝐴 ( 𝐹 “ { ( 𝐹𝑋 ) } ) = ( 𝐹 “ { ( 𝐹𝑥 ) } ) )
10 9 3ad2ant3 ( ( 𝐹 Fn 𝐴𝐴𝑉𝑋𝐴 ) → ∃ 𝑥𝐴 ( 𝐹 “ { ( 𝐹𝑋 ) } ) = ( 𝐹 “ { ( 𝐹𝑥 ) } ) )
11 fnex ( ( 𝐹 Fn 𝐴𝐴𝑉 ) → 𝐹 ∈ V )
12 cnvexg ( 𝐹 ∈ V → 𝐹 ∈ V )
13 imaexg ( 𝐹 ∈ V → ( 𝐹 “ { ( 𝐹𝑋 ) } ) ∈ V )
14 11 12 13 3syl ( ( 𝐹 Fn 𝐴𝐴𝑉 ) → ( 𝐹 “ { ( 𝐹𝑋 ) } ) ∈ V )
15 14 3adant3 ( ( 𝐹 Fn 𝐴𝐴𝑉𝑋𝐴 ) → ( 𝐹 “ { ( 𝐹𝑋 ) } ) ∈ V )
16 1 elsetpreimafvb ( ( 𝐹 “ { ( 𝐹𝑋 ) } ) ∈ V → ( ( 𝐹 “ { ( 𝐹𝑋 ) } ) ∈ 𝑃 ↔ ∃ 𝑥𝐴 ( 𝐹 “ { ( 𝐹𝑋 ) } ) = ( 𝐹 “ { ( 𝐹𝑥 ) } ) ) )
17 15 16 syl ( ( 𝐹 Fn 𝐴𝐴𝑉𝑋𝐴 ) → ( ( 𝐹 “ { ( 𝐹𝑋 ) } ) ∈ 𝑃 ↔ ∃ 𝑥𝐴 ( 𝐹 “ { ( 𝐹𝑋 ) } ) = ( 𝐹 “ { ( 𝐹𝑥 ) } ) ) )
18 10 17 mpbird ( ( 𝐹 Fn 𝐴𝐴𝑉𝑋𝐴 ) → ( 𝐹 “ { ( 𝐹𝑋 ) } ) ∈ 𝑃 )