Step |
Hyp |
Ref |
Expression |
1 |
|
setpreimafvex.p |
⊢ 𝑃 = { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑥 ) } ) } |
2 |
|
id |
⊢ ( 𝑋 ∈ 𝐴 → 𝑋 ∈ 𝐴 ) |
3 |
|
fveq2 |
⊢ ( 𝑥 = 𝑋 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑋 ) ) |
4 |
3
|
sneqd |
⊢ ( 𝑥 = 𝑋 → { ( 𝐹 ‘ 𝑥 ) } = { ( 𝐹 ‘ 𝑋 ) } ) |
5 |
4
|
imaeq2d |
⊢ ( 𝑥 = 𝑋 → ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑥 ) } ) = ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑋 ) } ) ) |
6 |
5
|
eqeq2d |
⊢ ( 𝑥 = 𝑋 → ( ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑋 ) } ) = ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑥 ) } ) ↔ ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑋 ) } ) = ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑋 ) } ) ) ) |
7 |
6
|
adantl |
⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑥 = 𝑋 ) → ( ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑋 ) } ) = ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑥 ) } ) ↔ ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑋 ) } ) = ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑋 ) } ) ) ) |
8 |
|
eqidd |
⊢ ( 𝑋 ∈ 𝐴 → ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑋 ) } ) = ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑋 ) } ) ) |
9 |
2 7 8
|
rspcedvd |
⊢ ( 𝑋 ∈ 𝐴 → ∃ 𝑥 ∈ 𝐴 ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑋 ) } ) = ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑥 ) } ) ) |
10 |
9
|
3ad2ant3 |
⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝐴 ) → ∃ 𝑥 ∈ 𝐴 ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑋 ) } ) = ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑥 ) } ) ) |
11 |
|
fnex |
⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝑉 ) → 𝐹 ∈ V ) |
12 |
|
cnvexg |
⊢ ( 𝐹 ∈ V → ◡ 𝐹 ∈ V ) |
13 |
|
imaexg |
⊢ ( ◡ 𝐹 ∈ V → ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑋 ) } ) ∈ V ) |
14 |
11 12 13
|
3syl |
⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝑉 ) → ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑋 ) } ) ∈ V ) |
15 |
14
|
3adant3 |
⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝐴 ) → ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑋 ) } ) ∈ V ) |
16 |
1
|
elsetpreimafvb |
⊢ ( ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑋 ) } ) ∈ V → ( ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑋 ) } ) ∈ 𝑃 ↔ ∃ 𝑥 ∈ 𝐴 ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑋 ) } ) = ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑥 ) } ) ) ) |
17 |
15 16
|
syl |
⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝐴 ) → ( ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑋 ) } ) ∈ 𝑃 ↔ ∃ 𝑥 ∈ 𝐴 ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑋 ) } ) = ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑥 ) } ) ) ) |
18 |
10 17
|
mpbird |
⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝐴 ) → ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑋 ) } ) ∈ 𝑃 ) |