| Step | Hyp | Ref | Expression | 
						
							| 1 |  | setpreimafvex.p | ⊢ 𝑃  =  { 𝑧  ∣  ∃ 𝑥  ∈  𝐴 𝑧  =  ( ◡ 𝐹  “  { ( 𝐹 ‘ 𝑥 ) } ) } | 
						
							| 2 |  | id | ⊢ ( 𝑋  ∈  𝐴  →  𝑋  ∈  𝐴 ) | 
						
							| 3 |  | fveq2 | ⊢ ( 𝑥  =  𝑋  →  ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑋 ) ) | 
						
							| 4 | 3 | sneqd | ⊢ ( 𝑥  =  𝑋  →  { ( 𝐹 ‘ 𝑥 ) }  =  { ( 𝐹 ‘ 𝑋 ) } ) | 
						
							| 5 | 4 | imaeq2d | ⊢ ( 𝑥  =  𝑋  →  ( ◡ 𝐹  “  { ( 𝐹 ‘ 𝑥 ) } )  =  ( ◡ 𝐹  “  { ( 𝐹 ‘ 𝑋 ) } ) ) | 
						
							| 6 | 5 | eqeq2d | ⊢ ( 𝑥  =  𝑋  →  ( ( ◡ 𝐹  “  { ( 𝐹 ‘ 𝑋 ) } )  =  ( ◡ 𝐹  “  { ( 𝐹 ‘ 𝑥 ) } )  ↔  ( ◡ 𝐹  “  { ( 𝐹 ‘ 𝑋 ) } )  =  ( ◡ 𝐹  “  { ( 𝐹 ‘ 𝑋 ) } ) ) ) | 
						
							| 7 | 6 | adantl | ⊢ ( ( 𝑋  ∈  𝐴  ∧  𝑥  =  𝑋 )  →  ( ( ◡ 𝐹  “  { ( 𝐹 ‘ 𝑋 ) } )  =  ( ◡ 𝐹  “  { ( 𝐹 ‘ 𝑥 ) } )  ↔  ( ◡ 𝐹  “  { ( 𝐹 ‘ 𝑋 ) } )  =  ( ◡ 𝐹  “  { ( 𝐹 ‘ 𝑋 ) } ) ) ) | 
						
							| 8 |  | eqidd | ⊢ ( 𝑋  ∈  𝐴  →  ( ◡ 𝐹  “  { ( 𝐹 ‘ 𝑋 ) } )  =  ( ◡ 𝐹  “  { ( 𝐹 ‘ 𝑋 ) } ) ) | 
						
							| 9 | 2 7 8 | rspcedvd | ⊢ ( 𝑋  ∈  𝐴  →  ∃ 𝑥  ∈  𝐴 ( ◡ 𝐹  “  { ( 𝐹 ‘ 𝑋 ) } )  =  ( ◡ 𝐹  “  { ( 𝐹 ‘ 𝑥 ) } ) ) | 
						
							| 10 | 9 | 3ad2ant3 | ⊢ ( ( 𝐹  Fn  𝐴  ∧  𝐴  ∈  𝑉  ∧  𝑋  ∈  𝐴 )  →  ∃ 𝑥  ∈  𝐴 ( ◡ 𝐹  “  { ( 𝐹 ‘ 𝑋 ) } )  =  ( ◡ 𝐹  “  { ( 𝐹 ‘ 𝑥 ) } ) ) | 
						
							| 11 |  | fnex | ⊢ ( ( 𝐹  Fn  𝐴  ∧  𝐴  ∈  𝑉 )  →  𝐹  ∈  V ) | 
						
							| 12 |  | cnvexg | ⊢ ( 𝐹  ∈  V  →  ◡ 𝐹  ∈  V ) | 
						
							| 13 |  | imaexg | ⊢ ( ◡ 𝐹  ∈  V  →  ( ◡ 𝐹  “  { ( 𝐹 ‘ 𝑋 ) } )  ∈  V ) | 
						
							| 14 | 11 12 13 | 3syl | ⊢ ( ( 𝐹  Fn  𝐴  ∧  𝐴  ∈  𝑉 )  →  ( ◡ 𝐹  “  { ( 𝐹 ‘ 𝑋 ) } )  ∈  V ) | 
						
							| 15 | 14 | 3adant3 | ⊢ ( ( 𝐹  Fn  𝐴  ∧  𝐴  ∈  𝑉  ∧  𝑋  ∈  𝐴 )  →  ( ◡ 𝐹  “  { ( 𝐹 ‘ 𝑋 ) } )  ∈  V ) | 
						
							| 16 | 1 | elsetpreimafvb | ⊢ ( ( ◡ 𝐹  “  { ( 𝐹 ‘ 𝑋 ) } )  ∈  V  →  ( ( ◡ 𝐹  “  { ( 𝐹 ‘ 𝑋 ) } )  ∈  𝑃  ↔  ∃ 𝑥  ∈  𝐴 ( ◡ 𝐹  “  { ( 𝐹 ‘ 𝑋 ) } )  =  ( ◡ 𝐹  “  { ( 𝐹 ‘ 𝑥 ) } ) ) ) | 
						
							| 17 | 15 16 | syl | ⊢ ( ( 𝐹  Fn  𝐴  ∧  𝐴  ∈  𝑉  ∧  𝑋  ∈  𝐴 )  →  ( ( ◡ 𝐹  “  { ( 𝐹 ‘ 𝑋 ) } )  ∈  𝑃  ↔  ∃ 𝑥  ∈  𝐴 ( ◡ 𝐹  “  { ( 𝐹 ‘ 𝑋 ) } )  =  ( ◡ 𝐹  “  { ( 𝐹 ‘ 𝑥 ) } ) ) ) | 
						
							| 18 | 10 17 | mpbird | ⊢ ( ( 𝐹  Fn  𝐴  ∧  𝐴  ∈  𝑉  ∧  𝑋  ∈  𝐴 )  →  ( ◡ 𝐹  “  { ( 𝐹 ‘ 𝑋 ) } )  ∈  𝑃 ) |