Metamath Proof Explorer


Theorem elsetpreimafvb

Description: The characterization of an element of the class P of all preimages of function values. (Contributed by AV, 10-Mar-2024)

Ref Expression
Hypothesis setpreimafvex.p 𝑃 = { 𝑧 ∣ ∃ 𝑥𝐴 𝑧 = ( 𝐹 “ { ( 𝐹𝑥 ) } ) }
Assertion elsetpreimafvb ( 𝑆𝑉 → ( 𝑆𝑃 ↔ ∃ 𝑥𝐴 𝑆 = ( 𝐹 “ { ( 𝐹𝑥 ) } ) ) )

Proof

Step Hyp Ref Expression
1 setpreimafvex.p 𝑃 = { 𝑧 ∣ ∃ 𝑥𝐴 𝑧 = ( 𝐹 “ { ( 𝐹𝑥 ) } ) }
2 1 eleq2i ( 𝑆𝑃𝑆 ∈ { 𝑧 ∣ ∃ 𝑥𝐴 𝑧 = ( 𝐹 “ { ( 𝐹𝑥 ) } ) } )
3 eqeq1 ( 𝑧 = 𝑆 → ( 𝑧 = ( 𝐹 “ { ( 𝐹𝑥 ) } ) ↔ 𝑆 = ( 𝐹 “ { ( 𝐹𝑥 ) } ) ) )
4 3 rexbidv ( 𝑧 = 𝑆 → ( ∃ 𝑥𝐴 𝑧 = ( 𝐹 “ { ( 𝐹𝑥 ) } ) ↔ ∃ 𝑥𝐴 𝑆 = ( 𝐹 “ { ( 𝐹𝑥 ) } ) ) )
5 4 elabg ( 𝑆𝑉 → ( 𝑆 ∈ { 𝑧 ∣ ∃ 𝑥𝐴 𝑧 = ( 𝐹 “ { ( 𝐹𝑥 ) } ) } ↔ ∃ 𝑥𝐴 𝑆 = ( 𝐹 “ { ( 𝐹𝑥 ) } ) ) )
6 2 5 syl5bb ( 𝑆𝑉 → ( 𝑆𝑃 ↔ ∃ 𝑥𝐴 𝑆 = ( 𝐹 “ { ( 𝐹𝑥 ) } ) ) )