| Step |
Hyp |
Ref |
Expression |
| 1 |
|
setpreimafvex.p |
⊢ 𝑃 = { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑥 ) } ) } |
| 2 |
1
|
eleq2i |
⊢ ( 𝑆 ∈ 𝑃 ↔ 𝑆 ∈ { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑥 ) } ) } ) |
| 3 |
|
eqeq1 |
⊢ ( 𝑧 = 𝑆 → ( 𝑧 = ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑥 ) } ) ↔ 𝑆 = ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑥 ) } ) ) ) |
| 4 |
3
|
rexbidv |
⊢ ( 𝑧 = 𝑆 → ( ∃ 𝑥 ∈ 𝐴 𝑧 = ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑥 ) } ) ↔ ∃ 𝑥 ∈ 𝐴 𝑆 = ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑥 ) } ) ) ) |
| 5 |
4
|
elabg |
⊢ ( 𝑆 ∈ 𝑉 → ( 𝑆 ∈ { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑥 ) } ) } ↔ ∃ 𝑥 ∈ 𝐴 𝑆 = ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑥 ) } ) ) ) |
| 6 |
2 5
|
bitrid |
⊢ ( 𝑆 ∈ 𝑉 → ( 𝑆 ∈ 𝑃 ↔ ∃ 𝑥 ∈ 𝐴 𝑆 = ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑥 ) } ) ) ) |