Metamath Proof Explorer


Theorem elsetpreimafvb

Description: The characterization of an element of the class P of all preimages of function values. (Contributed by AV, 10-Mar-2024)

Ref Expression
Hypothesis setpreimafvex.p
|- P = { z | E. x e. A z = ( `' F " { ( F ` x ) } ) }
Assertion elsetpreimafvb
|- ( S e. V -> ( S e. P <-> E. x e. A S = ( `' F " { ( F ` x ) } ) ) )

Proof

Step Hyp Ref Expression
1 setpreimafvex.p
 |-  P = { z | E. x e. A z = ( `' F " { ( F ` x ) } ) }
2 1 eleq2i
 |-  ( S e. P <-> S e. { z | E. x e. A z = ( `' F " { ( F ` x ) } ) } )
3 eqeq1
 |-  ( z = S -> ( z = ( `' F " { ( F ` x ) } ) <-> S = ( `' F " { ( F ` x ) } ) ) )
4 3 rexbidv
 |-  ( z = S -> ( E. x e. A z = ( `' F " { ( F ` x ) } ) <-> E. x e. A S = ( `' F " { ( F ` x ) } ) ) )
5 4 elabg
 |-  ( S e. V -> ( S e. { z | E. x e. A z = ( `' F " { ( F ` x ) } ) } <-> E. x e. A S = ( `' F " { ( F ` x ) } ) ) )
6 2 5 syl5bb
 |-  ( S e. V -> ( S e. P <-> E. x e. A S = ( `' F " { ( F ` x ) } ) ) )