| Step | Hyp | Ref | Expression | 
						
							| 1 |  | setpreimafvex.p |  |-  P = { z | E. x e. A z = ( `' F " { ( F ` x ) } ) } | 
						
							| 2 | 1 | eleq2i |  |-  ( S e. P <-> S e. { z | E. x e. A z = ( `' F " { ( F ` x ) } ) } ) | 
						
							| 3 |  | eqeq1 |  |-  ( z = S -> ( z = ( `' F " { ( F ` x ) } ) <-> S = ( `' F " { ( F ` x ) } ) ) ) | 
						
							| 4 | 3 | rexbidv |  |-  ( z = S -> ( E. x e. A z = ( `' F " { ( F ` x ) } ) <-> E. x e. A S = ( `' F " { ( F ` x ) } ) ) ) | 
						
							| 5 | 4 | elabg |  |-  ( S e. V -> ( S e. { z | E. x e. A z = ( `' F " { ( F ` x ) } ) } <-> E. x e. A S = ( `' F " { ( F ` x ) } ) ) ) | 
						
							| 6 | 2 5 | bitrid |  |-  ( S e. V -> ( S e. P <-> E. x e. A S = ( `' F " { ( F ` x ) } ) ) ) |