Step |
Hyp |
Ref |
Expression |
1 |
|
setpreimafvex.p |
|- P = { z | E. x e. A z = ( `' F " { ( F ` x ) } ) } |
2 |
1
|
eleq2i |
|- ( S e. P <-> S e. { z | E. x e. A z = ( `' F " { ( F ` x ) } ) } ) |
3 |
|
eqeq1 |
|- ( z = S -> ( z = ( `' F " { ( F ` x ) } ) <-> S = ( `' F " { ( F ` x ) } ) ) ) |
4 |
3
|
rexbidv |
|- ( z = S -> ( E. x e. A z = ( `' F " { ( F ` x ) } ) <-> E. x e. A S = ( `' F " { ( F ` x ) } ) ) ) |
5 |
4
|
elabg |
|- ( S e. V -> ( S e. { z | E. x e. A z = ( `' F " { ( F ` x ) } ) } <-> E. x e. A S = ( `' F " { ( F ` x ) } ) ) ) |
6 |
2 5
|
syl5bb |
|- ( S e. V -> ( S e. P <-> E. x e. A S = ( `' F " { ( F ` x ) } ) ) ) |