Metamath Proof Explorer


Theorem preimafvelsetpreimafv

Description: The preimage of a function value is an element of the class P of all preimages of function values. (Contributed by AV, 10-Mar-2024)

Ref Expression
Hypothesis setpreimafvex.p P = z | x A z = F -1 F x
Assertion preimafvelsetpreimafv F Fn A A V X A F -1 F X P

Proof

Step Hyp Ref Expression
1 setpreimafvex.p P = z | x A z = F -1 F x
2 id X A X A
3 fveq2 x = X F x = F X
4 3 sneqd x = X F x = F X
5 4 imaeq2d x = X F -1 F x = F -1 F X
6 5 eqeq2d x = X F -1 F X = F -1 F x F -1 F X = F -1 F X
7 6 adantl X A x = X F -1 F X = F -1 F x F -1 F X = F -1 F X
8 eqidd X A F -1 F X = F -1 F X
9 2 7 8 rspcedvd X A x A F -1 F X = F -1 F x
10 9 3ad2ant3 F Fn A A V X A x A F -1 F X = F -1 F x
11 fnex F Fn A A V F V
12 cnvexg F V F -1 V
13 imaexg F -1 V F -1 F X V
14 11 12 13 3syl F Fn A A V F -1 F X V
15 14 3adant3 F Fn A A V X A F -1 F X V
16 1 elsetpreimafvb F -1 F X V F -1 F X P x A F -1 F X = F -1 F x
17 15 16 syl F Fn A A V X A F -1 F X P x A F -1 F X = F -1 F x
18 10 17 mpbird F Fn A A V X A F -1 F X P