Metamath Proof Explorer


Theorem preimafvsspwdm

Description: The class P of all preimages of function values is a subset of the power set of the domain of the function. (Contributed by AV, 5-Mar-2024)

Ref Expression
Hypothesis setpreimafvex.p P = z | x A z = F -1 F x
Assertion preimafvsspwdm F Fn A P 𝒫 A

Proof

Step Hyp Ref Expression
1 setpreimafvex.p P = z | x A z = F -1 F x
2 1 elsetpreimafvssdm F Fn A s P s A
3 2 ralrimiva F Fn A s P s A
4 pwssb P 𝒫 A s P s A
5 3 4 sylibr F Fn A P 𝒫 A