Metamath Proof Explorer


Theorem 0nelsetpreimafv

Description: The empty set is not an element of the class P of all preimages of function values. (Contributed by AV, 6-Mar-2024)

Ref Expression
Hypothesis setpreimafvex.p P = z | x A z = F -1 F x
Assertion 0nelsetpreimafv F Fn A P

Proof

Step Hyp Ref Expression
1 setpreimafvex.p P = z | x A z = F -1 F x
2 preimafvsnel F Fn A x A x F -1 F x
3 n0i x F -1 F x ¬ F -1 F x =
4 2 3 syl F Fn A x A ¬ F -1 F x =
5 4 ralrimiva F Fn A x A ¬ F -1 F x =
6 ralnex x A ¬ = F -1 F x ¬ x A = F -1 F x
7 eqcom = F -1 F x F -1 F x =
8 7 notbii ¬ = F -1 F x ¬ F -1 F x =
9 8 ralbii x A ¬ = F -1 F x x A ¬ F -1 F x =
10 6 9 bitr3i ¬ x A = F -1 F x x A ¬ F -1 F x =
11 5 10 sylibr F Fn A ¬ x A = F -1 F x
12 0ex V
13 1 elsetpreimafvb V P x A = F -1 F x
14 12 13 ax-mp P x A = F -1 F x
15 11 14 sylnibr F Fn A ¬ P
16 df-nel P ¬ P
17 15 16 sylibr F Fn A P