Metamath Proof Explorer


Theorem elsetpreimafvbi

Description: An element of the preimage of a function value is an element of the domain of the function with the same value as another element of the preimage. (Contributed by AV, 9-Mar-2024)

Ref Expression
Hypothesis setpreimafvex.p P = z | x A z = F -1 F x
Assertion elsetpreimafvbi F Fn A S P X S Y S Y A F Y = F X

Proof

Step Hyp Ref Expression
1 setpreimafvex.p P = z | x A z = F -1 F x
2 fniniseg F Fn A X F -1 F x X A F X = F x
3 fniniseg F Fn A Y F -1 F x Y A F Y = F x
4 eqeq2 F x = F X F Y = F x F Y = F X
5 4 anbi2d F x = F X Y A F Y = F x Y A F Y = F X
6 5 eqcoms F X = F x Y A F Y = F x Y A F Y = F X
7 3 6 sylan9bb F Fn A F X = F x Y F -1 F x Y A F Y = F X
8 7 ex F Fn A F X = F x Y F -1 F x Y A F Y = F X
9 8 adantld F Fn A X A F X = F x Y F -1 F x Y A F Y = F X
10 2 9 sylbid F Fn A X F -1 F x Y F -1 F x Y A F Y = F X
11 eleq2 S = F -1 F x X S X F -1 F x
12 eleq2 S = F -1 F x Y S Y F -1 F x
13 12 bibi1d S = F -1 F x Y S Y A F Y = F X Y F -1 F x Y A F Y = F X
14 11 13 imbi12d S = F -1 F x X S Y S Y A F Y = F X X F -1 F x Y F -1 F x Y A F Y = F X
15 10 14 syl5ibr S = F -1 F x F Fn A X S Y S Y A F Y = F X
16 15 rexlimivw x A S = F -1 F x F Fn A X S Y S Y A F Y = F X
17 1 elsetpreimafv S P x A S = F -1 F x
18 16 17 syl11 F Fn A S P X S Y S Y A F Y = F X
19 18 3imp F Fn A S P X S Y S Y A F Y = F X